初三数学总复习知识点

发布时间:2018-06-26 20:12:51

初三数学知识点

第一章 二次根式

1 二次根式:形如 ()的式子为二次根式;

性质:)是一个非负数;

2 二次根式的乘除:

3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

4 海伦-秦九韶公式:,S是三角形的面积,p为

第二章 一元二次方程

1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。

2 一元二次方程的解法

配方法:将方程的一边配成完全平方式,然后两边开方;

公式法:

因式分解法:左边是两个因式的乘积,右边为零。

3 一元二次方程在实际问题中的应用

4 韦达定理:设是方程的两个根,那么有

第三章 旋转

1 图形的旋转

旋转:一个图形绕某一点转动一个角度的图形变换

性质:对应点到旋转中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等。

2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;

3 关于原点对称的点的坐标

第四章 圆

1 圆、圆心、半径、直径、圆弧、弦、半圆的定义

2 垂直于弦的直径

圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

5 点和圆的位置关系

点在圆外

点在圆上 d=r

点在圆内 d

定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

6直线和圆的位置关系

相交 d

相切 d=r

相离 d>r

切线的性质定理:圆的切线垂直于过切点的半径;

切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7 圆和圆的位置关系

外离 d>R+r

外切 d=R+r

相交 R-r

内切 d=R-r

内含 d

8 正多边形和圆

正多边形的中心:外接圆的圆心

正多边形的半径:外接圆的半径

正多边形的中心角:没边所对的圆心角

正多边形的边心距:中心到一边的距离

9 弧长和扇形面积

弧长

扇形面积:

10 圆锥的侧面积和全面积

侧面积:

全面积

11 (附加)相交弦定理、切割线定理

第五章 概率初步

1 概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。

2 用列举法求概率

一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=

3 用频率去估计概率

下册

第六章 二次函数

1 二次函数 =

a>0,开口向上;a<0,开口向下;

对称轴:

顶点坐标:

图像的平移可以参照顶点的平移。

2 用函数观点看一元二次方程

3 二次函数与实际问题

第七章 相似

1 图形的相似

相似多边形的对应边的比值相等,对应角相等;

两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

相似比:相似多边形对应边的比值。

2 相似三角形

判定:

平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3 相似三角形的周长和面积

相似三角形(多边形)的周长的比等于相似比;

相似三角形(多边形)的面积的比等于相似比的平方。

4 位似

位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

第八章 锐角三角函数

1 锐角三角函数:正弦、余弦、正切;

2 解直角三角形

第九章 投影和视图

1 投影:平行投影、中心投影、正投影

2 三视图:俯视图、主视图、左视图。

3 三视图的画法

初三数学知识点

一、《一元二次方程

1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.

3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:

Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;

Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等).

4. 一元二次方程的根系关系: 当ax2+bx+c=0 (a≠0) 时,如Δ≥0,有下列公式:

※ 5.当ax2+bx+c=0 (a≠0) 时,有以下等价命题:

(以下等价关系要求会用公式;Δ=b2-4ac 分析,不要求背记)

(1)两根互为相反数 = 0且Δ≥0 b = 0且Δ≥0;

(2)两根互为倒数 =1且Δ≥0 a = c且Δ≥0;

(3)只有一个零根 = 0且0 c = 0且b≠0;

(4)有两个零根 = 0且= 0 c = 0且b=0;

(5)至少有一个零根 =0 c=0;

(6)两根异号 0 a、c异号;

(7)两根异号,正根绝对值大于负根绝对值<0且0 a、c异号且a、b异号;

(8)两根异号,负根绝对值大于正根绝对值<0且0 a、c异号且a、b同号;

(9)有两个正根 >0,>0且Δ≥0 a、c同号, a、b异号且Δ≥0;

(10)有两个负根 >0,<0且Δ≥0 a、c同号, a、b同号且Δ≥0.

6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.

ax2+bx+c=a(x-x1)(x-x2) 或 ax2+bx+c=.

7.求一元二次方程的公式:

x2 -(x1+x2)x + x1x2 = 0. 注意:所求出方程的系数应化为整数.

8.平均增长率问题--------应用题的类型题之一 (设增长率为x):

(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.

(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和.

9.分式方程的解法:

10. 二元二次方程组的解法:

※11.几个常见转化:

二、《

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1.垂径定理及推论:

如图:有五个元素,“知二可推三”;需记忆其中四个定理,

即“垂径定理”“中径定理” “弧径定理”“中垂定理”.

几何表达式举例:

∵ CD过圆心

CD⊥AB

2.平行线夹弧定理:

圆的两条平行弦所夹的弧相等.

几何表达式举例:

3.“角、弦、弧、距”定理:(同圆或等圆中)

“等角对等弦”; “等弦对等角”;

“等角对等弧”; “等弧对等角”;

“等弧对等弦”;“等弦对等(优,劣)弧”;

“等弦对等弦心距”;“等弦心距对等弦”.

几何表达式举例:

(1) ∵∠AOB=∠COD

∴ AB = CD

(2) ∵ AB = CD

∠AOB=∠COD

4.圆周角定理及推论:

(1)圆周角的度数等于它所对的弧的度数的一半;

(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)

(3)“等弧对等角”“等角对等弧”;

(4)“直径对直角”“直角对直径”;(如图)

(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)

(1) (2)(3) (4)

几何表达式举例:

(1) ∵∠ACB=∠AOB

……………

(2) ∵ AB是直径

ACB=90°

(3) ∵ ACB=90°

∴ AB是直径

(4) ∵ CD=AD=BD

ΔABC是RtΔ

5.圆内接四边形性质定理:

圆内接四边形的对角互补,并且任何一个外

角都等于它的内对角.

几何表达式举例:

∵ ABCD是圆内接四边形

CDE =∠ABC

C+∠A =180°

6.切线的判定与性质定理:

如图:有三个元素,“知二可推一”;

需记忆其中四个定理.

(1)经过半径的外端并且垂直于这条

半径的直线是圆的切线;

(2)圆的切线垂直于经过切点的半径;

※(3)经过圆心且垂直于切线的直线必经过切点;

※(4)经过切点且垂直于切线的直线必经过圆心.

几何表达式举例:

(1) ∵OC是半径

∵OCAB

∴AB是切线

(2) ∵OC是半径

∵AB是切线

∴OCAB

(3) ……………

7.切线长定理:

从圆外一点引圆的两条切线,

它们的切线长相等;圆心和这一

点的连线平分两条切线的夹角.

几何表达式举例:

∵ PA、PB是切线

∴ PA=PB

∵PO过圆心

∠APO =∠BPO

8.弦切角定理及其推论:

(1)弦切角等于它所夹的弧对的圆周角;

(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(如图)

(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)

(1) (2)

几何表达式举例:

(1)∵BD是切线,BC是弦

∠CBD =∠CAB

(2)

∵ ED,BC是切线

∠CBA =∠DEF

9.相交弦定理及其推论:

(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;

(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.

(1) (2)

几何表达式举例:

(1) ∵PA·PB=PC·PD

………

(2) ∵AB是直径

∵PCAB

∴PC2=PA·PB

10.切割线定理及其推论:

(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;

(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.

(1) (2)

几何表达式举例:

(1) ∵PC是切线,

PB是割线

∴PC2=PA·PB

(2) ∵PB、PD是割线

∴PA·PB=PC·PD

11.关于两圆的性质定理:

(1)相交两圆的连心线垂直平分两圆的公共弦;

(2)如果两圆相切,那么切点一定在连心线上.

(1) (2)

几何表达式举例:

(1) ∵O1,O2是圆心

O1O2垂直平分AB

(2) ∵1 、⊙2相切

∴O1 、A、O2三点一线

12.正多边形的有关计算:

(1)中心角n ,半径RN 边心距rn

边长an ,内角n 边数n;

(2)有关计算在RtΔAOC中进行.

公式举例:

(1) n =

(2)

几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高

三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦

切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外)

公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正

多边形的中心角.

二 定理:

1.不在一直线上的三个点确定一个圆.

2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.

三 公式:1.有关的计算:(1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.(4)扇形面积S扇形 =;(5)弓形面积S弓形 =扇形面积SAOB±ΔAOB的面积.(如图)

2.圆柱与圆锥的侧面展开图:

(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)

(2)圆锥的侧面积:S圆锥侧 =. (L=2πr,R是圆锥母线长;r是底面半径)

四 常识:

1. 圆是轴对称和中心对称图形.

2. 圆心角的度数等于它所对弧的度数.

3. 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心;

三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.

4. 直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)

直线与圆相交 d<r ; 直线与圆相切 d=r ; 直线与圆相离 d>r.

5. 圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)

两圆外离 d>R+r; 两圆外切 d=R+r; 两圆相交 R-r<d<R+r;

两圆内切 d=R-r; 两圆内含 d<R-r.

6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.

7.关于圆的常见辅助线:

已知弦构造弦心距.

已知弦构造RtΔ.

已知直径构造直角.

已知切线连半径,出垂直.

圆外角转化为圆周角.

圆内角转化为圆周角.

构造垂径定理.

构造相似形.

两圆内切,构造外公切线与垂直.

两圆内切,构造外公切线与平行.

两圆外切,构造内公切线与垂直.

两圆外切,构造内公切线与平行.

两圆同心,作弦心距,可证得AC=DB.

两圆相交构造公共弦,连结圆心构造中垂线.

PA、PB是切线,构造双垂图形和全等.

相交弦出相似.

一切一割出相似, 并且构造弦切角.

两割出相似,并且构造圆周角.

双垂出相似,并且构造直角.

规则图形折叠出一对全等,一对相似.

圆的外切四边形对边和相等.

若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.

等腰三角形底边上的的高必过内切圆的圆心 和切点,并构造相似形.

RtΔABC的内切圆半径:r=.

补全半圆.

AB=.

AB=.

PC过圆心,PA是切线,构造

双垂、RtΔ.

O是圆心,等弧出平行和相似.

作AN⊥BC,可证出:

.

初三数学总复习知识点

相关推荐