大学物理实验报告答案(最全)

发布时间:2020-04-21 09:16:03

大学物理实验报告答案(最全)



大学物理实验报告答案(最全)

包括实验数据及思考题答案全)

1.伏安法测电阻

实验目的 (1) 利用伏安法测电阻。

(2) 验证欧姆定律。

(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。

U

实验方法原理 根据欧姆定律, R = ,如测得 U I 则可计算出 R。值得注意的是,本实验待测电阻有两只,

I

一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。



实验装置



待测电阻两只,05mA 电流表 1 只,05V 电压表 1 只,050mA 电流表 1 只,010V 电压表一



只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。

实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学

生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。

(1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。

(2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。

(3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。

数据处理



测量次数

U1/V

I1/mA

R1/

测量次数

U2/V

I2/mA

R2/



1

5.4

2.00

2700

1

2.08

38.0

54.7



2

6.9

2.60

2654

2

2.22

42.0

52.9



3

8.5

3.20

2656

3

2.50

47.0

53.2



U = Umax× 1.5% ,得到 U1=



0.15V ,



U



V



(1)

(2)



I = Imax× 1.5% ,得到 I1= 0.075mA,



2= 0.075

I2= 0.75mA



U



2



I



2



u



= ×



1



,



u



=



=

(3) 再由 uRR



(



3V



+

) (



3I



)



3



,求得



R1



9 10



R2



1





(4) 结果表示



R

1



= (2.92 ± 0.09)



, R

×102=



(44 1)

±



2.光栅衍射

实验目的

(1) 了解分光计的原理和构造。

(2) 学会分光计的调节和使用方法

(3) 观测汞灯在可见光范围内几条光谱线的波长

实验方法原理





若以单色平行光垂直照射在光栅面上, 按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: (a + b) sin ψk

=dsin ψk=±kλ

如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0

ψ =0 处,各色光仍重叠在一起,形成中央明条纹。在中央明条纹两侧对称地分布着 k=123级光谱 ,各级光谱

线都按波长大小的顺序依次 排列成一组彩色谱线,这样就把复色光分解为单色光。如果已知光栅常数,用分光计测出 k

级光谱中某一明条纹的衍射角ψ,即可算出该明条纹所对应的单色光的波长λ

实验步骤

(1) 调整分光计的工作状态,使其满足测量 条件。

(2) 利用光栅衍射 测量汞灯在可见光范 围内几条谱线的波长。



由于衍射光谱在中央明条纹两侧对



称地分布,为了提高测量的准确度,测量第k级光谱时 ,应测出 +k级和-k



级光谱线的位置,两位置的差值之 半即为实验时 k1

为了减少分光计刻度盘的偏心误差,测量每条光谱线时 ,刻度盘上的两个游标都要读数 ,然后取其平均值 (

游标的读数方法与游 标卡尺的读数方法基本一致)

为了使十字丝对准光谱线,可以使用望远镜微调螺钉12来对准。

测量时,可将望远 镜置最右端,从 -l 级到 +1 级依次测量,以免漏测数据。

数据处理



谱线 游标



1

(k=-1)



1

(k=+1)



φ



λnm



λ0nm E



l()

2()

绿()

()



102°45′ 62°13′

282°48′ 242°18′

102°40′ 62°20′

282°42′ 242°24′

101°31′ 63°29′

281°34′ 243°30′

97°35′ 67°23′

277°37′ 247°28′



20.258° 577.1

20.158° 574.4

19.025° 543.3

15.092° 433.9



579.0

577.9

546.1

435.8



0.33

0.45

0.51

0.44



(1) 与公认值比较

计算出各条谱线的相对误



λ0为公认值。

(2) 计算 出紫色谱线波长 的不确定度

( )

⎡ ∂ +

(a b)sin ϕ



2



E =



λ λ

0 x

λ 0



其中



u



ϕ



= a +



ϕ



u(λ) =

1





ϕ



π



( )



(



b) | cosϕ | u( )



=



600



×



.

cos15 092



×



×

60 180



=0.467nm ; U =2×u(λ) =0.9 nm



1.

2.



最后结果为: λ=(433.9±0.9) nm

当用钠光(波长λ=589.0nm)垂直入射到 1mm 内有 500 条刻痕的平面透射光栅上时,试问最多能看到第几级光谱?

请说明理由。

答:由(a+b)sinφ=kλ k={(a+b)/λ}sinφ

φ最大为 90º 所以 sinφ=1

a+b=1/500mm=2*10-6m λ=589.0nm=589.0*10-9m

k=2*10-6/589.0*10-9=3.4 最多只能看到三级光谱。

当狭缝太宽、太窄时将会出现什么现象?为什么? 答:狭缝太宽,则分辨本领将下降,如两条黄色光谱线分不开。

狭缝太窄,透光太少,光线太弱,视场太暗不利于测量。

3. 为什么采用左右两个游标读数?左右游标在安装位置上有何要求?

答:采用左右游标读数是为了消除偏心差,安装时左右应差 180º\u12290X





3.光电效应

实验目的

(1) 观察光电效现象,测定光电管的伏安特性曲线和光照度与光电流关系曲线;测定截止电压,并通过现象了解其物

理意义。

(2) 练习电路的连接方法及仪器的使用 ; 学习用图像总结物理律。

实验方法原理

(1) 光子打到阴极上 ,若电子获得 的能量 大于 逸出 功时则会 逸出 ,在电场力的作用下向 阳极 运动而形成正向

电流 。在 没达到饱和前 ,光电流与电压成线性关系 ,接近饱和时呈非线性关系 ,饱和后电流不再增加

p

< class=' _25'>

(2) 电光源发光后 ,其照度随距光源的距离的平方成 (r

2

)反比即光电管得到的光子数与 r2成反比,因此打出的电子

数也与 r

2

成反比,形成的饱和光电流 也与 r2成反比, I r-2

(3) 若给 光电管接反向电压 u ,在 eU < mvmax/ 2=eUS(vmax为具有最大速度的电子的速度 ) 仍会有电子移动

到阳极而形成光电流 ,当继续增大 电压 U,由于电场力做负功使 电子减速 ,当使其到达 阳极前速度刚好为零 U=US

此时所 观察 到的 光电流为零 ,由此 可测 得此光电管在当前光源下的截止电压 US

实验步骤

(1) 按讲义中的电路原理图连接好实物电路图;

(2) 测光电管的伏安特性曲线:

先使正向电压加至30伏以上,同时使光电流达最大(不超量程),

将电压从0开始按要求依次加大做好记录;

(3) 测照度与光电流的关系:

先使光电管距光源20cm处,适当选择光源亮度使光电流达最大(不超量程)

逐渐远离光源按要求做好记录;

实验步骤

(4) 测光电管的截止电压:

将双向开关换向;

使光电管距光源20cm处,将电压调至“0” 适当选择光源亮度使光电流达最大(不超量程),记录此时的光

电流I0,然后加反向电压使光电流刚好为“0”,记下电压值US

使光电管远离光源(光源亮度不变)重复上述步骤作好记录。

数据处理

(1) 伏安特性曲线

-0.6



U /V



4



0



1.0 2.0 4.0 6.0 8.0 10.0 20.0 30.0 40.0



I /mA 0



2.96 5.68 10.3



16.8



18.7



19.9



19.9



19.9



19.9



19.9



(2) 照度与光电流的关系



4



5



8



0



2



4



5



7



L /cm 20.0 25.0 30.0 35.0 40.0 50.0 60.0 70.0 80.0



1/L2



0.002

5



0.001

6



0.001

1



0.000

8



0.000

6



0.000

4



0.000

3



0.000

2



0.000

15



I /µA 19.97 12.54 6.85 4.27 2.88 1.51 0.87 0.53 0.32

25

20

15

10

5

0



-10 0 10 20 30 40 50

流曲线

(3) 零电压下的光电流及截止电压与照度的关系



伏安特性曲线



照度与光电





L /cm 20.0

I0/µA 1.96



25.0

1.85



30.0

1.06



35.0

0.85



40.0

0.64



50.0

0.61



60.0

0.58



70.0

0.55



US/V



0.64



0.63



0.65



0.66



0.62



0.64



0.65



0.63



1. 临界截止电压与照度有什么关系?从实验中所得的结论是否同理论一致?如何解 释光的波粒二象性? 答:临界截止

电压与照度无关,实验结果与理论相符。

光具有干涉、衍射的特性,说明光具有拨动性。从光电效应现象上分析,光又具有粒子性,由爱因斯坦方程来描

述:hν=(1/2)mv2max+A

2. 可否由 Us′ ν曲线求出阴极材料的逸出功?答:可以。由爱因斯坦方程 hυ=e|us|+hυo可求出斜率Δus/Δυ=h/e

和普朗克常数,还可以求出截距(h/eυo,再由截距求出光电管阴极材料的红限 υo,从而求出逸出功 A=hυo

4.光的干涉牛顿环

实验目的

(1) 观察等厚干涉现象及其特点。

(2) 学会用干涉法 测量透镜的曲率半径与微小厚度。

实验方法原理

利用透明薄膜 (空气层 )上下表面对人射光的 依次反射,人射光的振幅将分成振幅不同且有一定光程差的两部分,

这是一种获得相干光的重要途径。由于两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,同一条干涉条纹所

对应的薄膜厚度相同,这就是等厚干涉。将一块曲率半径 R 较大 的平凸透镜的凸面置 于光学平板玻璃上,在透镜的凸

面和平板玻璃的上表面间就形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。当平 行的单色光垂直入射时,

入射光将在此薄膜上下两表面依次反射,产生具有一定光程差的两束相干光。因此形成以接触点为中心的一系列明暗交

2 2



替的同心圆环——牛顿环。透镜的曲率半径为:



R =



Dm Dn



=



y



实验步骤



4(m n 4(m n)

λ



(1) 转动读数显微镜的测微鼓轮 ,熟悉其读数方法 ;调整目镜,使十字叉丝清晰,并使其水平线与主尺平行 (判断的

方法是:转动读数显微镜的测微鼓轮,观察目镜中的十字叉丝竖线与牛顿环相切的切点连线是否始终与移动方向平行)

(2) 为了避免测微鼓轮的网程(空转)误差,在整个测量过程中,鼓轮只能向一个方向旋转。应尽量使叉丝的竖线对准暗

干涉条纹中央时才读数。

(3) 应尽量使叉丝的竖线对准暗干涉条纹中央时才读数。

(4) 测量时,隔一个暗环记录一次数据。

(5) 由于计算 R 时只需要知道环数差 m-n,因此以哪一个环作为第一环可以任选,但对任 一暗环其直径必须是对

应的两切点坐标之差。

数据处理



环的级数



m



24



22



20



1 8



16



环的位置 mm



21.391

28.449



21.552 21.708

28.320 28.163



21.862

27.970



22.041

27.811



环的直径 mm Dm



7.058



6.768



6.455



6.108



5.770



环的级数



n



14



12



10



8



6



环的位置 mm



22.237

27.632



22.435 22.662

27.451 27.254



22.881

26.965



23.162

26.723



环的直径/mm Dn



5.395



5.016



4.592



4.084



3.561



20.635

0.12



20.709



20.646 20.581

875.4

0.6



20.629



20.612





ucR

( )





y



2



m



2



n



2



=





2

0.12



=0.6



u( )





u( ) ⎞





u( )



+ ×



−8



R



=



⎜⎜



y



⎟⎟+

u R



mn



+ ⎜



mn







20.635





8.9 10



uc( R) = R ×c( ) =5.25mmU = 2× uc(R) = 11 mm

R

R = (R ± U ) =(875±11)mm

1. 透射光牛顿环是如何形成的?如何观察?画出光路示意图。答:光由牛顿环装置下方射入,在

空气层上下两表面对入射光的依次反射,形成干涉条纹,由上向下观察。

2. 在牛顿环实验中,假如平玻璃板上有微小凸起,则凸起处空气薄膜厚度减小,导致等厚干涉条纹

发生畸变。试问这时的牛顿环()将局部内凹还是局部外凸?为什么?

答:将局部外凸,因为同一条纹对应的薄膜厚度相同。

3. 用白光照射时能否看到牛顿环和劈 尖干涉条纹?此时的条纹有何特征?

答:用白光照射能看到干涉条纹,特征是:彩色的条纹,但条纹数有限。

5.双棱镜干涉

实验目的

(1) 观察双棱镜干涉现象,测量钠光的波长。

(2) 学习和巩固光路的同轴调整。

实验方法原理

双棱镜干涉实验与双缝实验、双面镜实验等一样,都为光的波动学说的建立起过决定性作用,同时也是测量光波

波长的一种简单的实验方法。双棱镜干涉是光的分波阵面干涉现象,由 S 发出的单色光经双棱镜折射后分成两列,相当

于从两个虚光源 S1 S2射出的两束相干光。这两束光在重叠区域内产生干涉,在该区域内放置的测微目镜中可以观察



到干涉条纹。根据光的干涉理论能够得出相邻两明(暗)条纹间的距离为 x =



d

D



λ ,即可有



λ =dx 其中 d 为两

D



个虚光源的距离,用共轭法来测,即 d =

;离距的镜目微

实验步骤

(1) 仪器调节

粗调



d1d2D 为虚光源到接收屏之间的距离,在该实验中我们测的是狭缝到测

。量测镜目微 x由,小很



将缝的位置放好,调至坚直,根据缝的位置来调节其他元件的左右和高低位置,使各元件中心大致等高。

细调

根据透镜成像规律用共轭法进行调节。使得狭缝到测微目镜的距离大于透镜的四倍焦距,这样通过移动透镜能够在

测微目镜处找到两次成像。首先将双棱镜拿掉,此时狭缝为物,将放大像缩小像中心调至等高,然后使测微目镜能够接

收到两次成像,最后放入双棱镜,调双棱镜的左右位置,使得两虚光源成像亮度相同,则细调完成。各元件中心基本达

到同轴。

(2) 观察调节干涉条纹

调出清晰的干涉条纹。视场不可太亮,缝不可太宽,同时双棱镜棱脊与狭缝应严格平行。取下透镜,为方便调节可

先将测微目镜移至近处,待调出清晰的干涉条纹后再将测微目镜移到满足大于透镜四倍焦距的位置。

(3) 随着 D 的增加观察干涉条纹的变化规律。

(4) 测量

测量条纹间距 x

用共轭法测量两虚光源 S1 S2的距离



测量狭缝到测微目镜叉丝的距离 D

数据处理

x 数据记录

条纹位置

次数

起始位置 a 终了位置 a′



被测条纹数



mm

|a-a′|



x



1

2

3

4

5

6



8.095

3.554

8.030

3.550

8.184

3.593



3.575

8.035

3.573

8.100

3.680

8.080



10

10

10

10

10

10



4.520

4.481

4.457

4.550

4.504

4.487



0.4520

0.4481

0.4457

0.4550

0.4504

0.4487



x = 0.44998mm



d 数据记录



mm



次数



放大像间距 d

1

a1a1



缩小像间距 d2

|a1-a1′| a2a2



|a2-a2′|



1

2

3

4

5

6



7.560

5.771

7.538

5.755

7.520

5.735



5.774

7.561

5.766

7.549

5.753

7.515



1.786

1.790

1.772

1.794

1.767

1.780



7.357

6.933

7.381

6.910

7.355

6.951



6.965

7.360

6.968

7.330

6.940

7.360



0.410

0.428

0.413

0.420

0.415

0.409



d1= 1.7915mm d2= 0.4158mm

D 数据记录



mm



狭缝位置 b

1

(1) x 的不确定度



测微目镜差丝位置 b′

660



D=|b-b′|

659



uA( ) = 0.001329mm

( ) 2



2



uB



( )



=



3



= 0.005770mm



u



uA( x) + u x



0.005921mm



=



B



( ) =



(2) d1 d2的不确定度

uA( ) = 0.004288mm



uA( ) = 0.002915mm





uB( ) = 0.007mm uB( ) = 0.005mm uB( ) =



=0.005770mm

3



( )

u



2



2



(1)



+ u ( ) =



=



uA(d1) + u d



2



B



2



B



0.01003mm



u( )



=



u d

( ) +



u d

( )



+ uB( ) = 0.00817mm



A



2



B



2



(3) D 的不确定度

u( ) = 1mm

(4) 波长的合成相对不确定度

2



2



2



ucλ

( )



=





u( )



+





u( )



+





u( )



=



×



−4



mm



λ



2



x







d

2







D



2





4.128 10



u( )

其中 =



1 ⎛ u( )

⎜⎜ ⎟⎟+



1 ⎛ u( )

⎜⎜ ⎟⎟=



×



−5





d





4 ⎝



d1





4 ⎝



d2





1.374 10



mm



(5) 测量结果





1



λ =dx 求得

D

( )



-4

λ = 5.87731×10 mm

7



U = 2uc( )结果表达式为



2



uc= 2.427 ×10 mm;包含因子 k = 2 时, λ 的扩展不确定度

−4



λ = λ + U = (5.877 ±



×

0.005) 10



mm



2.



1. 测量前仪器调节应达到什么要求?怎样才能调节出清晰的干涉条纹?

答:共轴,狭逢和棱背平行与测微目镜共轴,并适当调节狭逢的

宽度。

2. 本实验如何测得两虚光源的距离 d?还有其他办法吗?

答:d=(d1*d2)1/2或利用波长λ已知的激光作光源,则 d=(D/Δx)λ

3. 狭缝与测微目镜的距离及与双棱镜的距离改变时,条纹的间距和

数量有何变化?

答:狭缝和测微目镜的距离越近,条纹的间距越窄,数量不变,狭缝

和双棱镜的距离越近,条纹间距越宽,数量越小。

4 . 在同一图内画出相距为 d 虚光源的 S1 S2所成的像 d1

d2的光路图。

6.测薄透镜的焦距

实验目的

(1) 掌握测薄透镜焦距的几种方法;

(2) 掌握简单光路的分析和调整的方法;

(3) 了解透镜成像原理,掌握透镜成像规律;

(4) 进一步学习不确定度的计算方法。

实验方法原理

(1) 自准法

当光()点在凸透镜的焦平面上时,光点发出的光线经过透镜变成平行光束,再经过在透镜另一侧的平面镜反射后

又汇聚在原焦平面上且与发光点(物点)对称。

(2) 物距像距法

测出物距(u)与相距(v)代入公式:1/u +1/v=1/f 可求 f

(3) 共轭法

保持物与屏的距离(L)不变,移动透镜,移动的距离为(e),其中一次成放大像另一次成缩小像,放大像1/u + 1/v=1/

f ,缩小像1/(u+e)+1/(v-e)=1/ f ,由于 u+v=L ,所以f =(L2-e2)/4L

(4) 凹透镜焦距的测量

利用光路可逆原理,将凸透镜所成的实像作为凹透镜的物,即可测出凹透镜成实像的物距和像距,代入公式1/u +

1/v=1/f 可求出焦距 f

实验步骤

本实验为简单设计性实验,具体实验步骤由学生自行确定,必要时课建议学生按照实验原理及方法中的顺序作试





验。 要求学生 自行设计的能直接反映出测量结果的数据 记录 表格。

数据处理

(1) 自准法,物距像距法,则凹透镜焦距三个试验将所测数据及计算结果填写在自行设计的表格中。

(2) 对共轭法的测量数据及处理实例

测量数据记录表



O1

O1 O1 O1



O2

O2 O2 O2



e=o2-o1



f=(L2-e2)/4

L



f



52.4

3

53.5

0

51.6

7

52.7

0

51.3

0

52.3



52.9

0

52.7

0

52.8

9

52.9

0

52.8

0

52.8



52.6

7

53.1

0

52.2

8

52.8

0

52.0

5

52.5



98.0

0

97.9

8

99.0

0

98.8

0

98.6

0

98.3



99.0

0

99.2

0

99.5

0

99.2

1

98.9

0

99.1



98.5

0

98.5

9

99.2

5

99.0

1

98.7

5

98.7



45.83 19.82

45.49 19.92

46.97 19.52

46.21 19.64

46.70 19.59



19.6

9



4



0



7



4



0



2



46.15



19.70



不确定度的计算过程:

6



uA(e)=



(

eie

1



)2



0.047 cm



uB( ) = 0.30 cm



6



(6 −1)=



( )

2+



u2( )



u(e)=



uA



B



= 0.31 cm u(L)= 0.30 cm

2



2



( )





L22





所以



u



=





+ e



u



2 ( )



+





2e





u



2 ( )



= 0.368 ×



10-2



f





(22 )

Le L





⎣⎢



L2e2⎥⎦



u( f )=0.368×10-2×19.683cm=0.072cm U =2u( f )=0.145cm=0.1cm

最后表达式:f = (19.7±0.1) cm

1. 你认为三种测量凸透镜焦距的方法,哪种最好?为什么?

答:共轭法最好,因为这个方法把焦距的测量归结为对可以精确测定的量 L e 的测量,避免了在测量 u v 时,由于

估计透镜光心位置不准确所带来的误差。

2 2



2.



f =



L e

4 L



推导出共轭法 f 的标准相对合成不确定度传递公式。根据实际结果,试说明 uB(L)uB(e)uA(e)



哪个量对最后结果影响最大?为什么?由此你可否得到一些对实验具有指导性意义的结论? 答:uA(L)对最后结果影响最

大,因为 L 为单次测量量。对 O1O2的测量时,要采用左右逼近法读数。

3. 测量凹透镜焦距 f 和实验室给出的 f0,比较后计算出的 E 值(相对误差)一般比较大,试分析 E 大的原因?

答:E 较大的原因可能是因为放入凹透镜后所成像的清晰度很难确定,即像的聚焦情况不好,从而导致很难测出清

晰成像的位置。

4. 在测量凸透镜的焦距时,可以利用测得的多组 uv 值,然后以 u+v 作纵轴,以 u·v 作横轴,画出实验曲线。根据

(3-15-1)事先推断一下实验曲线将属于什么类型,怎样根据这条曲线求出透镜的焦距 f?

u υ

f =

答:曲线是直线,可根据直线的斜率求出 ff=1/k,因为 1/f=1/u+1/v,即 +

u υ ,故可有 f=1/k

5. 测量凸透镜的焦距时,可以测得多组 uv 值,以 v/u(即像的放大率)作纵轴,以 v 作横轴,画出实验曲线。试问这

条实验曲线具有什么形状?怎样由这条曲线求出透镜的焦距 f ?

答:曲线是直线,在横轴上的截距就是 f





7.激光全息照相

实验目的

(1) 了解全息照相的原理及特点。

(2) 掌握漫反射物体的全息照相方法,制作漫反射的三维全息图

(3) 掌握反射全息的照相方法,学会制作物体的白光再现反射全息图。

(4) 进一步熟悉光路的调整方法,学习暗室技术。

实验方法原理

(1) 概述

全息照相是利用光涉的干涉和衍射原理,将物光波以干涉条纹的形式记录下来,然后在一定条件下,利用衍射再现

原物体的立体图像。可见,全息照相必须分两步进行:物体全息图的记录过程;立体物像的再现过程。

(2) 全息照相与普通照相的主要区别

全息照相能够把物光波的全部信息记录下来,而普通照相只能记录物光波的强度。

全息照片上每一部分都包含了被摄物体上每一点的光波信息,所以它具有可分割性,即全息照片的每一部分都能

再现出物体的完整的图像。

在同一张全息底片上,可以采用不同的角度多次拍摄不同的物体,再现时,在不同的衍射方向上能够互不干扰地

观察到每个物体的立体图像。

(3) 全息照相技术的发展

全息照相技术发展到现在已有四代。本实验将用激光作光源完成物体的第二代全息图漫反射全息图和第三代全息

反射全息图的拍摄和再现。



e-H



e-H



O

实验步骤



θ



L2



θ



M2



L1



eN



L.K

S

M1



O H



L



eN



L.K



首先要熟悉本实验所用仪器和光学元件。打开激光器电源,点亮 He-Ne 激光器,调整其工作电流,使其输出最强的



H

激光,然后按下述内容和步骤开始进行实验。

(1) 漫反射全息图的拍摄



M



按漫反射全息光路图摆放好各元件的位置,整个光路大概占实验台面的三分之二左右。 各光束都应与台面平

行,通过调平面镜的俯仰角来调节。且光点都要打到各元件的中心部位。两束光的光程差约为 20cm,光程都是由分束

镜开始算起,沿着光束前进的方向量至全息底片为止。物光与参考光夹角为 30°\u65374X50°\u12290X参考光与物光的光强比为

3:18:1(通过调整扩束镜的位置来实现)。曝光时间为 6S上底片及曝光拍照(底片上好后要静止 12min),药

膜面要正对物体放。

(2) 白光再现反射全息图

按反射全息光路摆放好各元件的位置,先不放入扩束镜 L,各光事与台面平行。 调整硬币,使之与干板(屏)

平行,使激光束照在硬币的中心。 放入扩束镜,使光均匀照射且光强适中,确定曝光时间为 3s 曝光,硬币与

干板间距为 1cm

(3) 底片处理

显影。显影后冲洗 1min,停显 30s 左右,定影 35min,定影后可打开白炽灯,用水冲洗干板 510min,再

用吹风机吹干(吹时不可太近且不可正对着吹,以免药膜收缩)。

(4) 再现观察

漫反射全息图的再现。

白光再现反射全息图的观察。

数据处理本实验无数据处理内容

1. 全息照像有哪些重要特点?

答:全息照相是利用光波的干涉和衍射原理,将物体发出的特定波前(同时包括振幅和位相)以干涉条纹的形式记

录下来,然后在一定条件下,利用衍射再现原物体的立体像。全息照相必须分两步进行:(1)物体全息图的记录过程;

2)立体物像的再现过程。

2. 全息底片和普通照像底片有什么区别?

答:(1)全息照相能够把物光波的全部信息(即振幅和相位)全部记录下来,而普通照相只能记录物光波的强度(既

振幅),因此,全息照片能再现出与原物体完全相同的立体图象。(2)由于全息照片上的每部分都包含了被摄物体上

每一点的光波信息,所以,它具有可分割性,即全息照片的每一部分都可以再现出原物体的立体图象。( 3)在同一张

全息底片上,可以采用不同的角度多次拍摄不同的物体,再现时,在不同的衍射方向上能够互不干扰地观察到每个物体

的立体图象。





3. 为什么安装底片后要静止一段时间,才能进行曝光?

答:为了减少震动,提高拍摄质量,减震是全息照相的一项重要措施,要保证照相质量,光路中各元器件的相对位移量

要限制在<λ/2 范围内。

5. 普通照像在冲洗底片时是在红光下进行的,全息照像冲洗底片时为什么必须在绿光甚至全黑下进行?

答:因为全息干板涂有对红光敏感的感光材料,所以冲洗底片时必须在绿光甚至全黑下进行。

8.用惠斯通电桥测电阻

实验目的

(1) 掌握用惠斯通电桥测电阻的原理

(2) 正确应用复射式光点检流计

(3) 学会用QJ19型箱式电桥测电阻

实验方法原理

应用自组电桥和箱式电桥两种方法来测未知电阻 Rx



其原理如图示,其中 R1R2R3是三个已知电阻与未知电阻 Rx构成四个臂,调节

R



R3



Ucd=0 时电桥平衡。即 I1R1=I2R2, I1Rx=I2R3 Rx=

实验步骤

(1) 自组电桥:



1R3

R2



按图 3-9-1 连接电路,根据被测阻值范围恰当选择比例臂(在电阻箱上), 判断平衡指示仪用指针式检流计。

调整测定臂 R3使其平衡,记下各臂阻值.逐一测得 RX1RX2RX RX

(2) 箱式电桥:

(按图 3-9-3 或箱式电桥仪器铭牌右上角的线路图接线,平衡指示仪用复射式光点检流计。

参照书 P95页表格选取 R1R2两臂和电源电压,参照自组桥测试结果选取 R3的初始值。

对每个被测电阻通过不同的灵敏度分别进行粗细调平衡,并记录相应阻值。

数据处理



自组点桥数据

RX

1

R 1

1 500

R 1



2

000



RX

3

3



000



RX

5

5



000



箱式电桥数据

RX

1 R

1/R2

1 R



1

0



RX

1

1



2

0



RX

1

3



X

0



R

1

5



0



RX

1

1



2 500

R



1



000



3



000



5



000



1



3



46.60



58.51



06.42



04.21



3

X



R



475.2

1

475.2



592.0

3

592.0



069.0

5

069.0



042.8

1

042.8



X



R



1

466.0



3

585.1



5

064.2



1

042.1



数据处理:

(1) 自组电桥(a =0.1 ) R= 3 Ra/100 U0.95=0.95R

U1=0.95× 3 ×1475.20.1÷100=2Ω

U2=0.95× 3 ×3592.0×0.1/100=6Ω

U3=0.95× 3 ×5069.0×0.1/100=8Ω

U4=0.95× 3 ×1042.8×0.1/100=2Ω



测量结果:R1=(1475±2) Ω



R2=(3592±6) Ω



R3=(5069±8) Ω



R4=(1043±2) Ω



(2) 箱式电桥(a = 0.05 级) R=±a/100%(kR3+RN/10),

U0.95=0.95R

得:U=0.95×0.05/100×(10R3+1000/10)





U1=0.95×0.05/100×(10×146.60+100)=0.7Ω

U2=0.95×0.05/100×(10×358.51+100)=2Ω

U3=0.95×0.05/100×(10×506.42+100)=2Ω

U4=0.95×0.05/100×(10×104.21+100)=0.5Ω

测量结果: R1=(1466.0±0.7)Ω R2=(3585±2)Ω

R3=(5064±2)Ω R4=(1042.1±0.5)Ω

思考题

(1) 电桥一般有两个比例臂 R1R2,一个测定臂 R3和另一个待测电阻 RX组成。电桥的平衡条件是RX=R1/R2

R3

(2) 不能平衡,因为桥臂两端 C D 两点电位不会相等。

(3) 不会,因为被测阻值仅仅依赖于 R1R2R3三个阻值。

会,因为要由检流计判断是否平衡。

不会,因为检流计分度值不影响电桥误差。

会,因为电压太低会降低电桥的灵敏度,从而增大误差。

会,因为除了 R1R2R3三个电阻外,还有导线电阻。

(4) 由被测阻值大约为1.2kΩ,应考虑电源电压及倍率。电源电压选择6V,倍率R1/R2=1

因为当电桥的四个臂接近时电桥有较高的灵敏度。

1.电桥由哪几部分组成? 电桥的平衡条件是什么?

答:由电源、开关、检流计桥臂电阻组成。

平衡条件是 Rx=(R1/R2)R3

2.若待测电阻 Rx 的一 个头没接(或断头),电桥是否能调平衡?为什么?答:不能,Rx没接(或断头),电路将变为右图

所示,AC CD 间总有电流,所以电桥不能调平。

3.下列因素是否会使电桥误差增大?为什么?(1) 电源电压不太稳定;由于电桥调

平以后与电源电压无关,则电源电压不太稳定基本不会使电桥误差增大。(2)

流计没有调好零点;若检流计没有调好零点,当其指针指零时检流计中电流不为

零,即电桥没有达到平衡正态,此时的测量读数中将会含有较大误差甚至会出现

错误读数;

(3) 检流计分度值大 ;检流计分度值大时会使电桥误差增大,因电桥的灵敏度

与分度值成反比;

(4) 电源电压太低;电源电压太低会使电桥误差增大,因电桥的灵敏度与电源电

压成正比;

(5) 导线电阻不能完全忽略;对高电阻不会,当被测电阻的阻值很高时导线电阻可以忽略。4. 为了能更好地测准电阻

在自组电桥时,假如要测一个约 1.2kΩ的电阻,应该考虑哪些因素 ?这些因素如何选取 ? 答:应考虑电源电压,比例

臂的电阻值,检流计的分度值。电源电压取 6VR1R2 1000Ω,检流计取 1.5 µA 表。

9.液体粘滞系数的测定

实验目的

(1) 观察液体的内摩擦现象,了解小球在液体中下落的运动规律。

(2) 用多管落球法测定液体粘滞系数。

(3) 掌握读数显微镜及停表的使用方法。

(4) 学习用外延扩展法获得理想条件的思想方法。

(5) 用作图法及最小二乘法处理数据。

实验方法原理

液体流动时,各层之间有相对运动,任意两层间产生等值反向的作用力, 称其为内摩擦力或粘滞力 f , f 的方向沿液

层接触面,其大小与接触面积 S 及速度梯度成正比, f = ηSdv



dx

当密度为ρ的小球缓慢下落时,根据斯托克斯定律可知,小球受到的摩擦阻力为 f = 3πηvd

小球匀速下落时, 小球所受的重力ρvg,浮力ρovg,及摩擦阻力 f 平衡,有



V (



)g

ρ − ρo=



3πηvod



13



(



)



=



d



g



3πηv d



6



π ρ − ρo



o





( ρ − ρ )gd2



η =



o

18vo



大量的实验数据分析表明 t d/D 成线性关系。以 t 为纵轴,d/D 为横轴的实验图线为一直线,直线在 t 轴上的截



距为 to,此时为无限广延的液体小球下所需要的时间,故



vo=Lt



实验图线为直线,因此有



t = to+ ax



可用最小二乘法确定 a t0的值。

实验步骤

(1) 用读数显微镜测钢珠的直径。

(2) 用卡尺量量筒的内径。

(3) 向量筒内投入钢球,并测出钢球通过上下两划痕之间距离所需要的时间。

(4) 记录室温。

数据处理



序号

1

2

3

4

5

6



小球直径 /mm

1.308

1.309 1.304

1.295

1.301

1.301 1.301

1.300

1.300

1.303 1.302

1.303

1.303

1.304 1.302

1.298

1.310

1.304 1.305

1.301

1.308

1.306 1.304

1.298



量筒直径 D

/mm

50.14

40.10

31.18

23.42

18.96

14.26



时间 t

/s

25.41 2.61

25.63 3.24

25.72 4.18

25.96 5.56

26.28 6.88

26.34 9.14



d

D



2

×10

/

17.8



用最小二乘法计算 to



t = 26.01



x = 0.0527



xt = 1.37



x2=



0.000328



a =

to=



0.0527 ×

2

0.0527





26.01 − 1.37

0.000328



=



−2.29

=



s



L



25.89 (



−2.29) × 0.0527



26.01



v

o



= = 4.61mm

to

2



s



η =



(ρ − ρ )gd

18vo



=



1.37 ×10



−3



kg / m s



1. 用误差理论分析本实验产生误差(测量不确定度)的主要原因。怎样减小它的测量误差?





答:主要有小球半径测量不确定度 u(d)、小球下落距离测量不确定度 u(L)和小球下落时间测量不确定度 u(t)等。

u(d)有两种原因:是小球直径不均匀,因此应求平均半径;是仪器误差。 u(L)有两种原因:用钢板尺测 L 所带

来的误差;按计数器时,因小球刚好没有对齐标示线而产生的误差。 u(t)按计数器时所产生的误差。

分析结果可见,小球直径的误差对测量结果影响最大,所以小球不能太小,其次量筒应适当加长,以增加落球时间,从

而减少时间测量的误差。

2. 量筒的上刻痕线是否可在液面位置?为什么?

答:不能。因为开始小球是加速运动,只有当小球所受的重力、浮力、粘滞力三力平衡后,小球做匀速运动时,才可以

计时,所以不能从液面开始。

3. 为什么小球要沿量筒轴线下落?

答:圆形玻璃量筒的筒壁对小球运动产生严重影响,只能在轴线上运动,才能使筒壁横向的作用力合力为零。

用电位差计测量电动势

实验目的

(1) 掌握电位差计的基本线路及测量原理。

(2) 掌握用线式电位差计、 UJ37箱式电位差计测量电动势的电压的基本实验方法。

实验方法原





(1) 用补偿法准确测量电动势(原理)

如图 3-10-2 所示。 EX是待测电源, E0是电动势可调的电源, E0 EX



E0



G



通过检流计联在一



起。当调节 E0的大小,使夫流计指针不偏转,即电路中没有电流时,两个

等,互相补偿,即 EXE0,电路达到平衡。

(2) 电位差计 测量电动势(方法)



EX

3-10-2 补偿原理



电源的电动势大小相



由电源 E、开关 K、变电阻 RC精密电阻 RAB和毫安表组成的回路叫工作

回路。由 RAB上有压降,当改变 a0b0两触头的位置,就改变 a0b0间的电

位差 Uab,就相当于可调电动势 E0。测量时把 Uab引出与未知电动势 EX

比较。由 EXKX Raxbx 组成的回路叫测量回路。调节 RC的大小,使工作回

路中电流值 I0 RAB的乘积 I0RAB略大于 ES EX二者中大的一个。



RC

A

aX



E

a0



ES



R

KS



K

b0



G



B

bX

G



mA



实验步骤

(1) 用线式电位差计测电池电动势



EX



KX



联结线路

按书中图 3-10-4 联电路,先联接工作回路,后联接测量回路。正确

联接测量回路的关键是正确联双刀双掷开关 K2

测量

(a) 调节 RC使 UAB≥EXI0值调好后不许再变。



3-10-3 电位差计原理图



(b) K2掷向 ES一侧,将滑动触头从 1 逐一碰试,直到碰相邻插孔时检流计指针向不同方向摆动或指零,将 a

入较小读数插孔,移动 b′使检流计指零。最后合上 K3

(c) K2掷向 EX,重复步骤(b)。

(2) UJ37 箱式电位差计的校准和使用

UJ37 箱式电位计测量范围为 1~103mV,准确度级别 0.1 级,工作温度范围 545

校准

先把检流计机械调零。把四刀双掷扳键 D 扳向标准,调节工作电流直至检流计指零点。

测量

校准完后,把待测电压接入未知,将未知电压开关扳向“ON”。先粗调,后细调。

数据处理



1



LSm

LS 4.6686

LS 4.6690

LS14.6688

LS 4.6689



Lxm

LX 9.5350

LX 9.5352

LX19.5351

LX 9.5358



E =



Lx



E 3.2004V



2

3



LS 4.6691

LS24.6690

LS 4.6688

LS 4.6673

LS34.6681



LX 9.5360

LX29.5359

LX 9.5355

LX 9.5362

LX39.5359



x



LS



S





4

5

6

平均值



LS 4.6687

LS 4.6691

LS44.6689

LS 4.6684

LS 4.6692

LS54.6688

LS 4.6686

LS 4.6690

LS64.6688

LS=4.6687



LX 9.5364

LX 9.5370

LX49.5367

LX 9.5360

LX 9.5370

LX59.5365

LX 9.5378

LX 9.5385

LX69.5382

LX9.5364



(1) 计算未知电动势 Ex的平均值

Lx



E =



E



3.2004V



x



LS



S



(2) 计算未知电动势 Ex的不确定度 U

计算直接测量量 Ls 的标准不确定度 u( )



u ( ) =



(

L L

Si S



)

2



0.3mm uB( ) = 8mm



A



(

n n

(



1)



)

2



uA( ) =



L L

Si S

( 1)

n n

2



2



0.3mm uB( ) = 8mm



u( ) =



uA( ) + uB( ) 8.0056mm



计算直接测量量的 Lx的标准不确定度u( )



u ( ) =



(

L L

xi



x



)2



1.1mm uB( ) = 12mm



A



2



(

n n



1)



2



u( ) =



uA( ) + uB( ) 12.05mm



Es的标准不确定度

( ) = uB( )

u



=



3



0.002V



RC



E



K



间接测量量 Ex的标准不确定度 uc( )

ucrel( )x=0.38%;

Ex的合成标准不确定度 uc( ) ucrel( )Ex0.012V

Ex的扩展不确定度

取包含因子k = 2Ex 的扩展不确定度U



EX



L1

L2



R



G



思考题 3-10-6 思考题 2 附图



U =



( ) =

kucx



2uc( )x0.024V



RX



KS



(3) 结果表达式

(



)V = (



)



Ex= Ex+U



3.20 ± 0.02 V;k = 2



(1) 按图3104联好电路做实验时,有时不管如何调动a头和b头,检流计G的指针总指零,或总不指零,两种情

况的可能原因各有哪些?

(2) 用电位差计可以测定电池的内阻,其电路如图3-10-6所示,假定工作电池E>EX,测试过程中Rc调好后不再变动,

RX是个准确度很高的电阻箱。R是一根均匀的电阻丝。L1L2分别为KX断开和接通时电位差计处于补偿状态时电阻丝的长

L L



度。试证明电池EX的内阻 r



=12RxRX为已知)。



L2

1.按图 3-10-4 联好电路做实验时,有时不管如何调动 a 头和 b 头,检流计 G 的指针总指零,或总不指零,两种情况的

可能原因各有哪些?答:总指零的原因:测量回路断路。总不指零的原因: E Ex极性不对顶; 工作回路断路;

RAB上的全部电压降小于 ESEx二者中小的一个。

3-10-6 思考题 2 附图





2. 用电位差计可以测定电池的内阻,其电路如图 3-10-6 所示,假定工作电池 EEx,测试过程中 Rc 调好后不再变动,

Rx 是个准确度很高的电阻箱。R 是一根均匀的电阻丝。L1L2分别为 Kx 断开和接通时电位差计处于补偿状态时电阻丝的

长度。试证明电池 Ex 的内阻 r=[(L1-L2)/L2]Rx(Rx为已知)



证明:设 A R 上单位长度的电位差,

Rx / ( r + Rx )Ex =AL2(3)



Vx K2的端电压,则有:

代入(2)式得:



Ex=AL1(1)



Vx=AL2(2)



(1)



式除(3)式,整理后得: r =[(L1- L2) / L2] Rx

4. 如图 3-10-4 所示的电位差计,由 A B 11m 长的电阻丝,若设 a=0.1V/m11m 长的电压降是 1.1V,用它测仅几

毫伏的温差电动势,误差太大。为了减少误差,采用图 3-10-8 所示电路。图 3-10-8 是将 11m 长的电阻丝 AB 上串接了

两个较大的电阻 R1 R2。若 AB 的总电阻已知为 r, R1R2r 上的总电压为 1.1V,并设计 AB(11m)电阻丝上的 a=0.1mV/m

试问 R1+R2的电阻值应取多少? 若标准电池 E0的电动势为 1.0186V,则 R1可取的最大值和最小值分别为多少(用线电阻 r

表示)?答: 由于电位差计单位长度电阻线的电位差为 a,则电阻线 AB 上的电位差 VAB=11a1.1mV,而回路电流应为

I =VAB/r。另一方面,由于 I(R1+R2+r)=1.1V

所以 (VAB/r)(R1+R2+r)= 1.1V, VAB[ (R1+R2)/r +1]= 1.1V。所以 R1+R2=[(1.1/VAB)-1]r=(1.1/0.0011-1)r999r

R2I = E0时,R1为最小,即 R1= R1min,此时有 R1I + E0+ Ir = 1.1。由于 I =VAB/r =0.0011/r,所以 R1min=(1.1-E0-Ir)/I=73r

R2I+Ir =E0 R1为最大,即 R1= R1max,此时有 R1I + E0= 1.1。所以 R1max =(1.1-E0)/I=74r

10.电热法测热功当量

实验目的

(1) 学习用电热法测热功当量,即QW的比值。

(2) 了解热学实验的特殊条件和基本方法。

(3) 学会用修正中温的方法作散热修正。

实验方法原理

将一电阻放入一定量的水中 ,电阻通电 t 秒,则电功为 A = VIt ,由电流的热效应 ,这些功将转化为参与热



作工



=





Q c



m



+ +



T T



(0m0+ c1m1+ c22



0.46δV ) (



f



0



)



A





如没有热量散失到环境中去,必有热功当量 J J =



Q



dT



终温修正是将散失到环境中的热量的温度的形式补偿回来,依据牛顿冷却公式。即



dt



= k (T − θ ),





1



T ′ −θ



k =



t



ln



f

T0− θ



,采用逆推的方法可以求到温度亏损



+

δT = dT1dT

2



+ +



dT

15



(计算机中有现成计算程序引



资利用 )

实验步骤

(1) 先将温度传感器探头悬在空气中,直接读室温θ下的电阻值。

(2) 用天平分别称量量热器内筒及内筒盛水后的质量。

(3) 按图接好电路。

(4) 再接通电源,立即开始搅拌,当温度高于室温后,听到报时器响声,即记录起始电阻值 R0,然后每隔1分钟记

一次电阻值,共记16次,然后断开电源。

(5) 切断电源后,待温度不再升高后,开始记录降温的初始阻值0,之后每隔一分钟记录一次电阻值,共记 16

次。

数据处理



δ

V=1.30



吕内筒 搅拌器



电阻丝 降温初



1.1

261KΩ 电压



4.90V



比热容 1.000 0.210 2.10



阻值

0.093 0.105 降温终



1.1

228KΩ 电流



1.00A



质量/g 142.45 23.85 3.00



阻值

23.00 0.300 降温时



15min





1.0905





温阻值









R0



R1



R2



R3



R4



R5



R6



R7



R8





1.1031 1.1049 1.1064 1.1080 1.1095 1.1111 1.1126 1.1142 1.1157



/



R9



R10



R11



R12



R13



R14



R15







1.1172 1.1187 1.1202 1.1217 1.1232 1.1247 1.1262

R0´ R1´ R2´ R3´ R4´ R5´ R6´



R7´



R8´





1.1261 1.1258 1.1256 1.1253 1.1251 1.1249 1.1247 1.1245 1.1243



/



R9´



R10´



R11´



R12´



R13´



R14´



R15´





1.1240 1.1238 1.1236 1.1234 1.1232 1.1230 1.1228



K



0.0061 /min



δT



-1.2039 °C





W/J



Q/cal J

895.83



J



E



17





修正前 4410.0



4.9228 0.7358



0

修正后 4410.0



5

1077.4



.5734%

4.0930 0.0940 2.2450



0



5



%



1. 该实验所必须的实验条件与采用的实验基本方法各是什么?系统误差的来源可能有哪些?

答:实验条件是系统与外界没有较大的热交换,并且系统(即水)应尽可能处于准静态变化过程。实验方法是电热法。

系统误差的最主要来源是系统的热量散失,而终温修正往往不能完全弥补热量散失对测量的影响。其他来源可能有

的温度不均匀,用局部温度代替整体温度。水的温度与环境温度差异较大,从而给终温的修正带来误差。温度,质

量及电功率等物理量的测量误差。

2. 试定性说明实验中发生以下情况时,实验结果是偏大还是偏小?

(1) 搅拌时水被溅出; 答:实验结果将会偏小。 水被溅出,即水的质量减少,在计算热功当量时,还以称横水的质量

计算,即认为水的质量不变,但是由于水的质量减少,对水加热时,以同样的电功加热,系统上升的温度要比水没有上

升时的温度要高,即水没溅出在同样电功加热时,应上升 T 度,而水溅出后上升的温度应是 T+ΔT 度。用 J = A / Q

Q =cimiT),J = A / [T+T/ mc],分母变大 J 变小。

(2) 搅拌不均匀 答:J 偏大、偏小由温度计插入的位置与电阻丝之间的距离而定。离电阻丝较远时,系统温度示数

比,匀均系统温度低,设 T 为均匀系统温度,温度计示值应为 T-ΔT,用 J=A/θ计算,分母变小,则 J 变大;离电阻丝

较近时,温度计示值应为 T+ΔT,分母变大,因而 J 变小。

(3) 室温测得偏高或偏低。 答:设θ0为室温,若测得值偏高Δθ时,测量得到的温度值为θ0+Δθ;偏低Δθ时,测

量温度值为θ0-Δθ,在计算温度亏损时,dTi=k(Ti-θ)k 是与是室温无关的量(k 与室温有关),只与降温初温和降温

终温以及降温时间有关,测得室温偏高时,dTi=k[Ti- (θ0+Δθ)],每秒内的温度亏损 dTi小于实际值,t 秒末的温度亏

δTi=∑k[Ti- (θ0+Δθ)]。此值小于实际值,由于散热造成的温度亏损δTi=Tf+ Tf,修正后的温度 Tf为:Tf″= Tf

-δTiδTi为负值,当测量值低于实际室温时,δTi的绝对值变小:Tf″=Tf+δTi|,即 Tf变小,ΔT 变小(其中Δ

TTf″- Tf Tf :升温初始值),



A

J = =

Q



A

cimiT



, J 变大,反之 J 变小。



11.电表的改装和校正

实验目的

(1) 掌握将微安表改装成较大量程的电流表和电压表的原理和方法。

(2) 了解欧姆表的测量原理和刻度方法。

(3) 学会绘制校准曲线的方法并对改装表进行校对。

实验方法原理

设微安表头满量程是 Ig,内阻为 Rg.

(1) 将表头并联一个分流阻值 Rs改成量成为 I 的电流表 ,如图 a)示,则有 I-IgRs=IgRg,即 Rs=Rg/(n-1)





(n = I/Ig)

(2) 将微安表头串联一个分压电阻 RH改成量程为 Ud电压表,如图( b)示,则有 Ig(Rg+RH)=U RH=U/IgR

实验步骤

(1) 改装量程为5 A电流表

计算分流阻值Rs的理论值,负载电阻 RL1000 Ω左右。

按图 3-7-8 连接电路,各部件摆放原则是方便于观擦与调节。

自查电路(线路的连接、标准表量程的选取、滑线变阻器初值的设定、各阻值的取值)。

校准电表 :首先进行满量程校正,然后进行逐点校正(完成数据表格)

(2) 改装电压表(程序与上面相同,电路图按3-7-10进行)

数据处理



改装表示值 I/mA 0.00



1.00



2.00



3.00



4.00



5.00



标准表示值

I0/mA

差值=I0-I /mA



减小时 1.03

增加时 1.01

平均 1.02

0.02



1.99

2.01

2.00

0.00



3.02

3.00

3.01

0.01



3.98

3.99

3.99

-0.01



5.00

5.00

5.00

0.00



改装表示值U /V 0.00



1.00



2.00



3.00



4.00



5.00



标准表示值

U0/V

差值=U0-U /V



减小时 1.02

增加时 1.01

平均 1.02

0.02



1.98

1.99

1.99

-0.01



3.01

3.02

3.02

0.02



4.02

4.01

4.01

0.01



5.00

5.00

5.00

0.00



1. 校正电流表时,如果发现改装的毫安表读数总是高于标准表的读数,分流电阻应调大还是调小 ?为什么? 答:

应调小。让电路中标准表读数不变,即保持回路电流不变,分流电阻值减小后将会分得更多的电流,从而使流过被改装

表表头的电流减小,改装表的读数也减小。

2. 校正电压表时,如果发现改装的电压表读数总是低于标准表的读数,分压电阻应调大还是调小?为什么? 答:应调小。

让电路中标准表读数不变,即加在改装电表上电压值不变。调小电阻,改装表的总电阻降低,流过改装毫安表的电流增

大,从而读数也增加。

3. 试证明用欧姆表测电阻时,如果表头指针正好指在表盘标度尺的中心,则这时的欧姆表指示值为什么正好等于该欧

1

I = Ig



姆表的内阻值。 答:设表头指针满刻度电流为 Ig、表头指针指表盘中心时电路中电流为 I,根据题意

V 1



2



,当表

V



内阻为 Rg、待测电阻为 Rx时,

V 1 V



I =



+ R

Rgx



=



2



I



g



;根据欧姆表工作原理,当待测电阻 Rx0 时,



I =

gR

g



。即



+ R

Rgx



=



2 R

g ,因而可得 RxRg。所以,欧姆表显示测Rx 读数即为该欧姆表的内阻。



思考题

(1) 应调小。因为表头过载,所以需要再分掉一部分多余的电流。

(2) 应调小。因为串联电路中电压的分配和阻值成正比。

(3) 证明 因为 IgU/(Rg+r) IU/(Rg+r+Rx)

所以 2IIg 2U/(Rg+r+Rx)U/(Rg+r)

所以 RxRg+r 证毕

(4) 由误差=量程×\u32423X别%,设改装表的级别为a′,

5×a′%= δImax+ 5×0.5% a′ = 0.9 ,故该装电流表的级别为 1.0





12.示波器的原理和使用

实验目的

(1) 了解示波器的主要结构和显示波形的基本原理;

(2) 掌握模拟示波器和函数信号发生器的使用方法;

(3) 观察正弦、矩形、三角波等信号发生器的使用方法;

(4) 通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。

实验方法原理

(1) 模拟示波器的基本构造

示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。

(2) 示波器显示波形原理

如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示

波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。

(3) 扫描同步

当扫描电压的周期 Tx是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏

上得到清晰而稳定的波形,这叫做信号与扫描电压同步。

(4) 多踪显示

根据开关信号的转换频率不同,有两种不同的时间分割方式,即交替断续方式。

(5) 观察李萨如图形并测频率



X方向切线对图形的切点数Nx

Y方向切线对图形的切点数Ny

π π



=



fy

fx



5π







0

实验步骤



4



2



4



π



4



2



4





(1) 熟悉示波器各控制开关的作用,进行使用前的检查和校准。



频率相同位相不同时的李萨如图形

(2) 将信号发生器的输出信号连接到示波器的 CH1 CH2,观察信号波形。

(3) 用示波器测量信号的周期 T、频率 f、幅值 U、峰-峰值 Up-p、有效值 Urms,频率和幅值任选。

(4) 观察李萨如图形和

(5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差

多波形显示法观测相位差。

李萨如图形判别法观测相位差。

数据处理

(1) 测量正弦信号峰峰值 UP-P,周期 T



示波器测量值



信号发生器显示值



H=4.0DIV



V0/DIV=0.5V/DIV UP-P=2.0V



U = 2.0V



L=5.0DIV



T0/DIV=20us/DIV T =0.10ms T = 0.10ms



U



p p



U





T T



Eupp=

U



= 0



ET=



T0



0=0



(2) 测量直流信号的幅度

H = 5.8 V0DIV=0.5V/DIV

(3) 测量相移

x1/DIV x/DIV

5.3 25.0



U 2.9V



U 3.0V

θ =x1×360°

x

76.32°



1. 模拟示波器为何能显示高速变化的电信号轨迹?

答:在模拟示波器垂直偏转板上加的是被观测信号电压,而在水平偏转板上加的是锯齿波(时间线性变化)信号电压,





所以示波器的示波管的横轴相当于直角坐标的时间轴,经过一个锯齿波信号周期,电子束便在示波管的荧光屏上描绘出

被观测信号的波形的一段轨迹。当锯齿波信号的周期大于或等于周期性观测信号的周期且与其相位锁定时(同步 ),电

子束便在示波管的荧光屏上描绘出被观测信号的波形的同一段轨迹,由于人眼的视觉暂留和荧光屏的余辉,便可以观测

到信号的波形。

2. 在本实验中,观察李萨如图形时,为什么得不到长时间稳定的图形?

答:因为 CH1 CH2 输入的是两个完全不相关的信号,它们的位相差难以保持恒定,所以得不到长时间的稳定波形。

3. 假定在示波器的 Y 轴输入一个正弦信号,所用的水平扫描频率为 120Hz,在荧光屏上出现三个稳定完整的正弦波形,

那么输入信号的频率是什么?这是否是测量信号频率的好方法?为何?

答:输入信号的频率是 360Hz。这种方法不是测量信号频率的好方法,因为用此方法测量的频率精确度低。

4. 示波器的扫描频率远大于或远小于输入正弦信号的频率时,屏上的图形是什么情况?

答:扫描频率远小于输入正弦信号频率时,出现图形是密集正弦波;扫描频率远大于输入正弦信号频率时,一个周期

的信号波形将会被分解成数段,显示的图形将会变成网状交叉线。

13.超声波声速的测量

实验目的

(1) 进一步熟悉示波器的基本结构和原理。

(2) 了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。

(3) 学习几种测定声波传播速度的原理和方法。

(4) 通过时差法对声波传播速度的测量,了解声纳技术的原理及其重要的实用意义。

实验方法原理

声波是一种弹性媒质中传播的纵波,波长、强度、传播速度等是声波的重要参数,超声波是频率大于 20 kH 的机械

波,本实验利用声速与振动频率 f 和波长λ之间的关系 v = λ f 来测量超声波在空气中的传播速度。

SV5 型声速测量组合实验仪(含专用信号源 ),可以做时差法测定超声波传播速度的实验;配以示波器可完成利用

共振干涉法,双踪比较法和相应比较法测量声速的任务。本声速测量仪是利用压电体的逆压电效应而产生超声波,利用

正压电效应接收超声波,测量声速的四种实验方法如下:(由于声波频率可通过声源的振动频率得出,所以测量声波波

长是本实验主要任务。)

1)李萨如图形相位判别法

频率相同的李萨如图形随着Δφ的不同,其图形的形状也不同,当形状为倾斜方向相同的直线两次出现时,Δφ

2π ,对应接受器变化一个波长。

2)共振法

由发射器发出的平面波经接受器发射和反射器二次反射后,在接受器与发射器之间形成两列传播方向相同的叠加

波,观察示波器上的图形,两次加强或减弱的位置差即为波形λ

3)双踪相位比较法

直接比较发信号和接收信号,同时沿传播方向移动接受器位置,寻找两个波形相同的状态可测出波长。

4)时差法

测出脉冲声速传播距离 X 和所经历时间 t, 便可求得声速。

实验步骤

(1) 李萨如图形相位比较法

转动声速测量组合实验仪的距离调节鼓轮,观察波形当出现两次倾斜方向相同的倾斜直线时,记录这两次换能器的

位置,两次位置之差为波长。

(2) 共振法

移动声速测量仪手轮会发现信号振幅发生变化,信号变化相邻两次极大值或极小值所对应的接受器移动的距离即是

λ/2 ,移动手轮,观察波形变化,在不同位置测 6 次,每次测 3 个波长的间隔。

(3) 比较法

使双通道两路信号双踪显示幅度一样,移动手法会发现其中一路在移动,当移动信号两次与固定信号重合时所对应

的接收器移动的距离是λ,移动手轮,观察波形变化,多记录几次两路信号重合时的位置,利用逐差法求波长。

(4) 时差法

转动手轮使两换能器的距离加大,每隔 10mm 左右记录一次数据 xiti,根据公式获得一系列 vi后,可以利用逐差

法求得声速 v 的平均值υ

数据处理

(1) 李萨如图形相位比较法

温度=20.8 信号发生器显示频率=37.003 kHz



接受器位置序号

接受器位置坐标



0

55.40



1

64.53



2

73.94



3

83.40



4

92.65



5

101.90





/mm

接受器位置序号

接受器位置坐标

/mm

xj=x+6x

x



6

111.30

55.90

9.32



7

120.68

56.15

9.36



8

129.95

56.01

9.34



9

139.25

55.85

9.31



10

148.60

55.95

9.33



11

158.06

56.16

9.36



λi=



i



6



1



5



−3



2



λ



λ

= Σ =



×

9.34 10



λ

= =

m; v f



3.4561×10 /



6 j=0

(2) 共振法



j



m s



温度=20.8 信号发生器显示频率=37.012 kHz



次数

1

2

3

4

5

6



1



接受器记

48.20

76.28

104.40

132.41

160.59

188.69

6



被测数

76.28

104.40

132.41

160.59

188.69

216.72



被测 λ

n

3

3

3

3

3

3



x = a1a2

28.08

28.12

28.01

28.18

28.10

28.03



/mm λ=x/n /mm λ

9.36

9.37

9.34

9.36×10-3

9.39

9.37

9.34



其中



λ = Σ λi=

6 i =1



×

9.36 10



−3



mv



= λ = 3.4649×102/

v f m s



(3) 比较法

温度=20.8 信号发生器显示频率=37.015 kHz

接受器位置序号 0 1 2



3



4



5



接受器位置坐标 57.65

接受器位置序号 6

接受器位置坐标 114.06

/mm



67.04

7

123.50



76.38

8

132.77



86.75

9

142.26



95.12

10

151.58



104.59

11

161.09



xj=xi+6 xi



56.41



56.46



56.39



55.51



56.46



56.50



1



5



λ

j

6jj=Σλ=0

(4)时差法



9.40



9.41



9.40



9.25



9.41



9.42



温度=20.8 信号发生器显示频率=37.032 kHz

接收器位置序号 i 0 1 2



3



4



5



接收器位置坐标 xi/mm 56.85 66.80



76.80



86.80



96.80



106.80



脉冲传播时间 ti/us

接收器位置序 i



347

6



377

7



407

8



434

9



465

10



491

11



接收器位置坐标 xi/mm 116.80 126.80



136.80



146.80



156.80



166.80



脉冲传播时间 ti/us

+

xixi



522



551



579



606



635



663



vj



=



6

ti+6



t



i



/ ms1



342.57 344.83



348.84



348.84



352.94



348.84



υ =



1



5

Σ



=



×



2



j= υj

6 0



3.4781 10



mm/s



(5) 环境温度为 T()时的声速





ν = ν



o



T

1 + =

T



× +

331.5 1



.

20 8

.



=



343.89m/s



o

(6) 不确定度的计算及实验结果

1 5



273 15



λ



=



Σ λ



=



−3



ν fλ



2



6 j=0j



9.38 × 10 m;



= = 3.4720 × 10 m/s



λ



Σ ( λ − λ

i



2

)





6



( )



uA( ) =



n( n −1 )



= 6.83×10 m



uB= 1×10− 5m



2



2



1.21×10− 5m



u( λ ) = uA( λ ) + uB( λ )



=



u( f ) = uB( f ) = 5 ×10−4×37.003 ×103+1 = 19.502Hz



λ



2

[u( λ )]+ [



u( )2



uc( v ) f



=



λ



f



]



= 37.003 ×103× 9.34 ×10−3×1.3986 ×10−3

= 0.4834 m/s

k = 2,则 U=2 uc( v ) = 0.9668 m/s

v = (v + v) = (345.61 ± 0.97) m/s

1. 示波器在使用过程中荧光屏上只有一条水平亮线而没有被测信号是什么原因造成的 ?答:在示波器的使用过程

中,上述现象经常出现,造成这一现象的原因很多,大致可归纳为: 示波器接地(GND)(测量时接地按键 GND 应该

弹起); 衰减开关 VOLTS/DIV 选择过大(测量时可先选择小些); 信号发生器输出过小或没有输出; 信号发

生器输出直流信号; 在信号的传输中,导线或接头接触不良,也可造成该现象; 示波器的相关功能键都应选择在

正确工作状态下。 总之,影响的因素很多,要求使用者在使用前一定认真阅读教材。

2. 在测量声速时,Y1(CH1)的输入信号,由于示波器的 Y 轴放大器、压电转换器、联接线路的相移等原因并不与声波的

位相相同,这对于观察测量声波波长有无影响? 为什么?

答:没有影响。因为波长是波在传播过程中位相差为的两点间的距离,与该处位相无关,所以无影响。

3. 试比较几种测声速方法的优缺点。

答:实验讲义上共列出了三种测量方法: 李萨如图相位比较法, 共振法,波形相位比较法。一般说来,李

萨如图相位比较法测量的比较准,同时便于对知识的温新和巩固,对于示波器的使用以及学生动手能力和思考问题的培

养,不失是一种较好的途径,但操作比较繁;对于共振法,判断相对要困难一些,所以测量误差一般要大一些,但可以

直观地了解共振现象;而波形相位比较法比的现象较直观,可操作性强,只是相位判别不如李萨如图相位比较法准确,

但只要认真操作,误差也不会太大。

14.迈克耳逊干涉仪

实验目的

(1) 了解迈克耳逊干涉仪的结构、原理及调节方法。

(2) 观察点光源的等倾干涉图样,用 He-Ne激光器校准干涉仪的精密丝杠。

3)观察白光干涉图样,利用白光干涉测定透明薄膜的厚度。

实验方法原理

(1) 仪器的结构原理

如右上图 ,从光源 S 发出的光 ,经透镜扩束后射至分束板 G1上,一部分被反射 ,一部分被透射 ,然后被相互

垂直的两平面镜 M1 M2反射后经 G1而在屏 E 处相遇,形成干涉条纹。

(2) 产生干涉的等效光路







如右下图, 干涉现象可以看作是光源在 M1 M2´\u21453X射镜中的虚光源和相干涉 的结果。所以

倾角为 θ , S1´\u21644X S2´\u21457X出的相干光的光程差 δ = n02d cosθ ≈ 2d cosθ (n0≈ 1)

(3) 单色点光源产生的干涉

1

δ = kλk 为整数 )时为明条纹 ,而 δ = (k +

2

时为暗条纹。 δ = 2d 光程差最大, δθ增加而减小,

θ相同点光程差 δ也相同 ,因此屏上干涉条纹是一些同

心圆环 ,越靠近环心条纹的级次越大 。这种干涉是由光源

发出的倾角相同的光干涉的结果 ,故称等倾干涉 。当增加

时,第 k 级条纹倾角 θ必增大 ,在屏上将看到条纹从圆心

向外涌出,反之缩进。每当 d 改变 λ/2 时,就

从圆心涌出缩进一个条纹。

(4) 等厚干涉、白光干涉

当光源为面光源,M1 M2´\u26377X微小角度时,形成空气尖,

发生等厚干涉。条纹是一些平行 M1 M2´\u20132X线的直线。条纹

间距与夹角呈反比。若用白光照射,可以直接在 M1的反射面

上观察到彩色条纹。

实验步骤

(1) He-Ne激光器调节迈克耳逊干涉仪,校准精密丝

杠。

转动干涉仪粗调手轮,使M1位置适当,调节M2背面的

调节螺丝,使每个螺丝的位置适中,调节M2镜架下的拉簧螺丝也使他们处于适中位置。



s s

1 2=



2d



,



打开激光器电源开关,让激光束射向 M2中部,使激光返回光点在在激光器出射口附近。反射光线和投射光线在

M1M2中部。

调节M2背面的螺丝,使屏E上两排光点对应重合,并可在重合光点内看到干涉条纹

用透镜使激光扩束,调整扩束镜使扩束后的激光射到分束板上,在观察屏上就会出现明显的干涉条纹。若干涉

条纹的圆心在视场之外,可轻微调整M2背面的螺丝使环心向视场趋近。

沿同方向转动微调股轮,使条纹缩进或涌出,记录M1的初始位置,然后每变化50条记录一次M1的位置,连初始位

置共测8次。

(2) 用白光干涉的彩色条纹测定透明薄膜的厚度

在前一步实验的基础上,转粗调手轮使 M1 M2´\u30340X外部向 M2´\u38752X近,同时配合调节 M2背面的螺丝和下部的拉簧螺

钉,直到条纹变宽变稀,视场中仅能容纳一条甚至不到一条条纹为止。

将毛玻璃放到分束板旁且垂直于激光束,放下观察屏,白织灯透过毛玻璃照射到分束板上,眼睛盯住平面镜 M1

转动微调鼓轮使 M1继续从 M2´\u22806X部向 M2´\u38752X近,可见条纹向凹侧移动,直到视场中部条纹快变直时,就能观察到白光干涉

的彩色条纹.此时记录 M1的位置 x1,然后在 M1前与 M1平行放入透明薄膜,必须继续沿原方向转动微调鼓轮 ,才能再次出现

彩色条纹,在此读取 M1位置 x2.重复测量 6

数据处理

条纹变化数与其对应坐标值记录表



条纹变

化数



0



50



100



150



200



250



300



350



M1 位置

x /mm



32.16074 32.17668 32.19262 32.20846 32.22430 32.24071 32.25604 32.27202

变化 100 M1应移动的理论长度 d=50λ=50×650=3.25×10-2mm



变化 100 M1移动的实际程度为

(x



(x x )



d ′ =



4



x0) + (x5x1) + (x6x2) +

7 3

4 × 2



= 3.18×10-2mm



Ed=



d d

d



= -0.35%



测定薄膜测量记录

M1位置/mm



di=

|



x1x2|





修正后





1

2

3



x1

30.83365

30.83391

30.83372



x2

30.81510

30.81600

30.81580



/mm

0.01855

0.01791

0.01792



d /mm



d =

/mm



d + Edd



4

5

6



30.83360

30.94281

30.94260

6



2



30.81508

30.92491

30.92460



0.01852

0.01790

0.01800



0.018133



0.018070



∑ (∆d − ∆di)



uAd



=



i=1



=



mm



( )



2



n(n − 1)



2



0.00013



uB(∆d ) = 0.0002 mm

−1

n



d

=

u( )



+

( )



(∆d) = 0.00024



mm



S = ∆d





− 1



=



0.0333670



mm



uAd uB

−1

n



n0





ucS

=

( )







1



u



(∆d) = 0.0006



mm



U = 2uc(∆S ) = 0.0012 mm



n







16.随机误差的统计规律

实验目的

(1) 通过一些简单测量,加深对随机误差统计规律的认识

(2) 学习正确估算随机误差、正确表达直接测量结果的一般方法

(3) 了解运用统计方法研究物理现象的简单过程

实验方法原理



对某一物理量在相同条件下进行 n 次重复测量 (n>100), 得到 n 个结果



x1, x2,, xn, 先找出它的最小值和最



大值 ,然后确定一个区间 [x′, x ] ,使这个区间包含了全部测量数据 。将区间 [x′, x ] 分成若干个小区间 ,比如 K

x ′ − x



个,则每个小区间的间隔 ∆ =



K



,统计测量结果出现在各个小区间的次数 M (称为频数 )。以测量数



据为横坐标,只需标明各区间的中点值,以频数



M 为纵坐标,画出各小区间及其对应的频数高度,则可得到一



组矩形图 ,这就是统计直方图 。直方图的包络表示频数的分布 ,它反映了测量数据的分布规律 ,也即随机误差的

分布规律。

实验步骤

(1) 用钢卷尺测量摆线长。

(2) 用游标卡尺测量摆球直径。

(3) 当摆长不变,摆角 (小于5o)保持一定时,摆动的周期是一个恒量,用数字秒表测量单摆的周期至少 100次,计

算测量结果的平均值T 和算术平均值的标准差 S (x)

(4) 保持摆长不变,一次测量20个以上全振动的时间间隔,算出振动周期。

数据处理



2.07 2.12 2.12

2.00 2.22 2.11

2.43 2.12 2.22

1.91 2.18 2.03

2.06 2.28 2.16

2.10 2.03 2.09

1.94 1.90 1.99

2.00 1.98 2.00

2.06 2.25 2.16

1.99 2.04 2.13



2.16

2.01

2.22

2.19

2.12

1.94

1.91

2.04

2.10

2.22



2.16 2.03 2.06 2.03

2.31 1.94 2.12 2.19

2.13 1.81 1.99 2.03

2.28 2.06 2.06 2.16

2.00 2.09 2.12 1.97

1.93 2.06 2.11 2.13

2.12 2.16 2.13 2.13

2.12 2.05 2.06 2.12

2.11 2.07 2.04 2.09

2.09 2.07 2.10 2.00



2.23 1.84

2.06 2.13

2.12 2.17

2.00 2.00

2.11 2.22

2.09 2.06

2.18 1.91

2.03 2.23

2.19 2.35

2.12 2.07



小区间

1.811 1.872

1.872 1.934



小区间中点值

1.841

1.093



频数 M

2

5



相对频数 M/n

0.02

0.05





1.934 1.996

1.996 2.058

2.058 2.120

2.120 2.182

2.182 2.244

2.244 2.306

2.306 2.368

2.368 2.430



1.965

2.027

2.089

2.151

2.213

2.275

2.337

2.399



8

18

34

19

8

3

2

1



d



0.08

0.18

0.34

0.19

0.08

0.03

0.02

0.01



l = 0.990 m



d = 0.03364 m

20 T ′ = 40.44 s

100

xi

=



L = l + =

2



1.00682 m

M

40



T =i1=

100

100



2.051s

2



30



S x

( )



=



( xix

i=1

n(n



)



=



.

0 006724



s



20



1)

T = T ± 2S (x) = (2.05 ± 0.01) s

T ′ =40.44=2.022 s

20

2



10



1.841 1.903 1.965 2.027 2.089 2.151 2.213 2.275 2.337 2.399

单摆周期统计直方图



x



g



T



4

= π

2



L =



m s

9.2910 /



2



g



T



=



T

T



2

2



L =



m s

9.5594 /

2



2



g0=



9.80891m / s

g g



E



T



=



T



g0



0



×100% =



5.28%



gg

ET=T



0



×100% =



2.54%



g0

1. 什么是统计直方图? 什么是正态分布曲线?两者有何关系与区别?

答:对某一物理量在相同条件下做 n 次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,

使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数 M,以测量数据为横坐标,以频

M 为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。

如果测量次数愈多,区间愈分愈小,则统计直方图将逐渐接近一条光滑的曲线,当 n 趋向于无穷大时的分布称为正

态分布,分布曲线为正态分布曲线。

2. 如果所测得的一组数据,其离散程度比表中数据大,也就是即 S(x)比较大,则所得到的周期平均值是否也会差异很

?

答:(不会有很大差距,根据随机误差的统计规律的特点规律,我们知道当测量次数比较大时,对测量数据取和

求平均,正负误差几乎相互抵消,各误差的代数和趋于零。





3. 测量凹透镜焦距 f 和实验室给出的 f0,比较后计算出的 E 值(相对误差)一般比较大,试分析 E

大的原因?

答:E 较大的原因可能是因为放入凹透镜后所成像的清晰度很难确定,即像的聚焦情况不好,从

而导致很难测出清晰成像的位置。

4. 在测量凸透镜的焦距时,可以利用测得的多组 uv 值,然后以 u+v 作纵轴,以 u·v 作横轴,画出

实验曲线。根据式(3-15-1)事先推断一下实验曲线将属于什么类型 ,怎样根据这条曲线求出透镜的焦

f?

u υ

f =

+



答:曲线是直线,可根据直线的斜率求出 ff=1/k,因为 1/f=1/u+1/v,即



u υ ,故可有 f=1/k



5. 测量凸透镜的焦距时 ,可以测得多组 uv 值,以 v/u(即像的放大率 )作纵轴,以 v 作横轴,画出实验

曲线。试问这条实验曲线具有什么形状 ?怎样由这条曲线求出透镜的焦距 f ?

答:曲线是直线,在横轴上的截距就是 f

大学物理实验报告答案(最全)

相关推荐