《化学工程与工艺专业英语》课文翻译

发布时间:2011-06-20

Unit 1 Chemical
Industry 化学工业

1 化学工业的起源
尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料苯胺紫并加以开发利用为标志的。20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。这方面所取得的成绩对德国很有帮助。特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。这种深刻的改变一直持续到战后(1918-1939
1940年以来,化学工业一直以引人注目的速度飞速发展。尽管这种发展的速度近年来已大大减慢。化学工业的发展由于1950年以来石油化学领域的研究和开发大部分在有机化学方面取得。石油化工在60年代和70年代的迅猛发展主要是由于人们对于合成高聚物如聚乙烯、聚丙烯、尼龙、聚脂和环氧树脂的需求巨大增加。
今天的化学工业已经是制造业中有着许多分支的部门,并且在制造业中起着核心的作用。它生产了数千种不同的化学产品,而人们通常只接触到终端产品或消费品。这些产品被购买是因为他们具有某些性质适合(人们)的一些特别的用途,例如,用于盆的不粘涂层或一种杀虫剂。这些化学产品归根到底是由于它们能产生的作用而被购买的。
2 化学工业的定义
在本世纪初,要定义什么是化学工业是不太困难的,因为那时所生产的化学品是很有限的,而且是非常清楚的化学品,例如,烧碱,硫酸。然而现在有数千种化学产品被生产,从一些原料物质像用于制备许多的半成品的石油,到可以直接作为消费品或很容易转化为消费品的商品。困难在于如何决定在一些特殊的生产过程中哪一个环节不再属于化学工业的活动范畴。举一个特殊的例子来描述一下这种困境。乳剂漆含有聚氯乙烯/聚醋酸乙烯。显然,氯乙烯(或醋酸乙烯)的合成以及聚合是化学活动。然而,如果这种漆,包括高聚物,它的配制和混合是由一家制造配料的跨国化学公司完成的话,那它仍然是属于化学工业呢还是应当归属于装饰工业中去呢?
因此,很明显,由于化学工业经营的种类很多并在很多领域与其它工业有密切的联系,所以不能对它下一个简单的定义。相反的每一个收集和出版制造工业统计数据的官方机构都会对如何届定哪一类操作为化学工业有自己的定义。当比较来自不同途径的统计资料时,记住这点是很重要的。
3 对化学工业的需要
化学工业涉及到原材料的转化,如石油 首先转化为化学中间体,然后转化为数量众多的其它化学产品。这些产品再被用来生产消费品,这些消费品可以使我们的生活更为舒适或者作药物维持人类的健康或生命。在生产过程的每一个阶段,都有价值加到产品上面,只要这些附加的价值超过原材料和加工成本之和,这个加工就产生了利润。而这正是化学工业要达到的目的。
在这样的一本教科书中提出:“我们需要化学工业吗?”这样一个问题是不是有点奇怪呢?然而,先回答下面几个问题将给我们提供一些信息:1)化学工业的活动范围,2)化学工业对我们日常生活的影响,3)社会对化学工业的需求有多大。在回答这些问题的时候我们的思路将要考虑化学工业在满足和改善我们的主要需求方面所做的贡献。是些什么需求呢?很显然,食物和健康是放在第一位的。其它我们要考虑的按顺序是衣物、住所、休闲和旅行。
(1食物。化学工业对粮食生产所做的巨大贡献至少有三个方面。第一,提供大量可以获得的肥料以补充由于密集耕作被农作物生长时所带走的营养成分。(主要是氮、磷和钾)。第二,生产农作物保护产品,如杀虫剂,它可以显著减少害虫所消耗的粮食数量。第三,生产兽药保护家禽免遭疾病或其它感染的侵害。
2健康。我们都很了解化学工业中制药这一块在维护我们的身体健康甚至延长寿命方面所做出的巨大贡献,例如,用抗生素治疗细菌感染,用β-抗血栓降低血压。


1
衣物。在传统的衣服面料上,现代合成纤维性质的改善也是非常显著的。用聚脂如涤纶或聚酰胺如尼龙所制作的T恤、上衣、衬衫抗皱、可机洗,晒干自挺或免烫,也比天然面料便宜。
与此同时,现代合成染料开发和染色技术的改善使得时装设计师们有大量的色彩可以利用。的确他们几乎利用了可见光谱中所有的色调和色素。事实上如果某种颜色没有现成的,只要这种产品确有市场,就可以很容易地通过对现有的色彩进行结构调整而获得。
这一领域中另一些重要进展是不褪色,即在洗涤衣物时染料不会被洗掉。 4住所,休闲和旅游。讲到住所方面现代合成高聚物的贡献是巨大的。塑料正在取代像木材一类的传统建筑材料,因为它们更轻,免维护(即它们可以抵抗风化,不需油漆)。另一些高聚物,比如,脲甲醛和聚脲,是非常重要的绝缘材料可以减少热量损失因而减少能量损耗。
塑料和高聚物的应用对休闲活动有很重要的影响,从体育跑道的全天候人造篷顶,足球和网球的经纬线,到球拍的尼龙线还有高尔夫球的元件,还有制造足球的合成材料。
多年来化学工业对旅游方面所作的贡献也有很大的提高。一些添加剂如抗氧化剂的开发和发动机油粘度指数改进使汽车日产维修期限从3000英里延长到6000英里再到12000英里。研发工作还改进了润滑油和油脂的性能,并得到了更好的刹车油。塑料和高聚物对整个汽车业的贡献的比例是惊人的,源于这些材料挡板,轮胎,坐垫和涂层等等超过40%
很显然简单地看一下化学工业在满足我们的主要需求方面所做的贡献就可以知道,没有化工产品人类社会的生活将会多么困难。事实上,一个国家的发展水平可以通过其化学工业的生产水平和精细程度来加以判断。
4 化学工业的研究和开发。
发达国家化学工业飞速发展的一个重要原因就是它在研究和开发方面的投入和投资。通常是销售收入的5%,而研究密集型分支如制药,投入则加倍。要强调这里我们所提出的百分数不是指利润而是指销售收入,也就是说全部回收的钱,其中包括要付出原材料费,企业管理费,员工工资等等。过去这笔巨大的投资支付得很好,使得许多有用的和有价值的产品被投放市场,包括一些合成高聚物如尼龙和聚脂,药品和杀虫剂。尽管近年来进入市场的新产品大为减少,而且在衰退时期研究部门通常是最先被裁减的部门,在研究和开发方面的投资仍然保持在较高的水平。
化学工业是高技术工业,它需要利用电子学和工程学的最新成果。计算机被广泛应用,从化工厂的自动控制,到新化合物结构的分子模拟,再到实验室分析仪器的控制。
一个制造厂的生产量很不一样,精细化工领域每年只有几吨,而巨型企业如化肥厂和石油化工厂有可能高达500,000吨。后者需要巨大的资金投入,因为一个这样规模的工厂要花费2亿5千万美元,再加上自动控制设备的普遍应用,就不难解释为什么化工厂是资金密集型企业而不是劳动力密集型企业。
大部分化学公司是真正的跨国公司,他们在世界上的许多国家进行销售和开发市场,他们在许多国家都有制造厂。这种国际间的合作理念,或全球一体化,是化学工业中发展的趋势。大公司通过在别的国家建造制造厂或者是收购已有的工厂进行扩张。
研究和开发,或通常所称R&D是制造业各个部门都要进行的一项活动。我们马上可以看到,它的内容变化很大。我们首先了解或先感觉一下这个词的含义。尽管研究和开发的定义总是分得不很清楚,而且有许多重叠的部分,我们还是要试着把它们区分开来。简单说来,研究是产生新思想和新知识的活动,而开发则是把这些思想贯彻到实践中得到新工艺和新产品的行为。可以用一个例子来描述这一点,预测一个有特殊生物活性的分子结构并合成它可以看成是研究而测试它并把它发展到可以作为一种新药推向市场这一阶段则看作开发部分。
1 基础研究和应用研究
在工业上进行研究和开发最主要的原因是经济利益方面,是为了加强公司的地位,提高公司的利润。R&D的目的是做出并提供信息和知识以减低不确定性,解决问题,以及向管理层提供更好的数据以便他们能据此做出决定。特别的项目涵盖很大的活动范围和时间范围,从几个月到20年。
我们可以在后面的段落里举出大量的R&D活动。但是如果我们举出的点子来源于研究院而不是工业化学家的头脑,这就是基础的或探索性的研究
基础研究通常与大学研究联系在一起,它可能是由于对其内在的兴趣而进行研究并且这种研究能够拓宽知识范
围,但在现实世界中的直接应用可能性是很小的。请注意,这种以内就在提出和解决问题方面提供了极有价值的训练,


2
比如,在指导下完成研究工作的学生所接受的研究方法学(的训练)。而且,从这些工作中产生的“有用的副产品”随后也能带来可观的使用价值。因此,物理学家宣称要不是量子理论的研究和发展我们可能仍然没有计算机和核能量。不管怎样,举一个特殊的化学方面的例子吧,在各个领域如烃的氧化方面所做的广泛的研究将为一些特殊的领域如环己烯氧化生成尼龙中间产物提供有用的信息。
通过合成可以生产出一些新的、更特殊的试剂以控制特殊的官能团转换,即发展合成方法或完成一些具有生物活性的新分子的合成。尽管前者显然属于基础性研究而后者则包括基础研究和实用性研究两部分。所谓“实用性”习惯上是指与在工业实验室完成的研究联系在一起的,因为它更具目的性,它是商业行为驱动的结果。
然而,请注意。近几年有很大的变化,大学研究机构正越来越多地转向工业界寻求研究经费,其结果就是他们的研究工作越来越多地是致力于实用研究。即使这样,学院工作的重点通常还是在于研究而不是开发。
2.工业研究和开发的类型
通常在生产中完成的实用型的或有目的性的研究和开发可以分为好几类,我们对此加以简述。它们是:1)产品开发;2)工艺开发;3)工艺改进;4)应用开发;每一类下还有许多分支。我们.对每一类举一个典型的例子来加以说明。在化学工业的不同部门内每类的工作重点有很大的不同。
(1产品开发。产品开发不仅包括一种新药的发明和生产,还包括,比如说,给一种汽车发动机提供更长时效的抗氧化添加剂。这种开发的产品已经使(发动机)的服务期限在最近的十年中从3000英里提高到60009000现在已提高到12000英里。请注意,大部分的买家所需要的是化工产品能创造出来的效果,亦即某种特殊的用途。Tdflon,或称聚四氟乙烯(PTFE)被购买是因为它能使炒菜锅、盆表面不粘,易于清洗。
2)工艺开发。工业开发不仅包括为一种全新的产品设计一套制造工艺,还包括为现有的产品设计新的工艺或方案。而要进行后者时可能源于下面的一个或几个原因:新技术的利用、原材料的获得或价格发生了变化。氯乙烯单聚物的制造就是这样的一个例子。它的制造方法随着经济、技术和原材料的变化改变了好几次。另一个刺激因素是需求的显著增加。因而销售量对生产流程的经济效益有很大影响。Penicillin早期的制造就为此提供了一个很好的例子。
Penicillin能预防战争中因伤口感染引发的败血症,因而在第二次世界大战(1939-1945)中,penicillin的需求量非常大,需要大量生产。而在那时,penicillin只能用在瓶装牛奶表面发酵的方法小量的生产。英国和美国投入了巨大的人力物力联合进行研制和开发,对生产流程做出了两个重大的改进。首先用一个不同的菌株黄霉菌代替普通的青霉,它的产量要比后者高得多。第二个重大的流程开发是引进了深层发酵过程。只要在培养液中持续通入大量纯化空气,发酵就能在所有部位进行。这使生产能力大大地增加,达到现代容量超过5000升的不锈钢发酵器。而在第一次世界大战中,死于伤口感染的士兵比直接死于战场上的人还要多。注意到这一点不能不让我们心存感激。
对一个新产品进行开发要考虑产品生产的规模、产生的副产品以及分离/回收,产品所要求的纯度。在开发阶段利用中试车间(最大容量可达100升)获得的数据设计实际的制造厂是非常宝贵的,例如石油化工或氨的生产。要先建立一个中试车间,运转并测试流程以获得更多的数据。他们需要测试产品的性质,如杀虫剂,或进行消费评估,如一种新的聚合物。
注意,副产品对于化学过程的经济效益也有很大的影响。酚的生产就是一个有代表性的例子。早期的方法,苯磺酸方法,由于它的副产品亚硫酸钠需求枯竭而变的过时。亚硫酸钠需回收和废置成为生产过程附加的费用,增加了生产酚的成本。相反,异丙基苯方法,在经济效益方面优于所有其他方法就在于市场对于它的副产品丙酮的迫切需求。丙酮的销售所得降低了酚的生产成本。
对一个新产品进行工艺开发的一个重要部分是通过设计把废品减到最低,或尽可能地防止可能的污染,这样做带来的经济利益和对环境的益处是显而易见的。
最后要注意,工业开发需要包括化学家、化学工程师、电子和机械工程师这样一支庞大队伍的协同合作才能取得成功。
3)工艺改进。工艺改进与正在进行的工艺有关。它可能出现了某个问题使生产停止。在这种情形下,就面临着很大的压力要尽快地解决问题以便生产重新开始,因为故障期耗费资财。
然而,更为常见的,工艺改进是为了提高生产过程的利润。这可以通过很多途径实现。例如通过优化流程提高产量,引进新的催化剂提高效能,或降低生产过程所需要的能量。可说明后者的一个例子是在生产氨的过程中涡轮压缩机的引进。这使生产氨的成本(主要是电)从每吨6.66美元下降到0.56美元。通过工艺的改善提高产品质量也会为产品打开新

3
的市场。
然而,近年来,最重要的工艺改进行为主要是减少生产过程对环境的影响,亦即防止生产过程所引起的污染。很明显,有两个相关连的因素推动这样做。第一,公众对化学产品的安全性及其对环境所产生影响的关注以及由此而制订出来的法律;第二,生产者必须花钱对废物进行处理以便它能安全地清除,比如说,排放到河水中。显然这是生产过程的又一笔费用,它将增加所生产化学产品的成本。通过减少废物数量提高效益其潜能是不言而喻的。
然而,请注意,对于一个已经建好并正在运行的工厂来说,只能做一些有限的改变来达到上述目的。因此,上面所提到的减少废品的重要性应在新公厂的设计阶段加以考虑。近年来另一个当务之急是保护能源及降低能源消耗。

4)应用开发。显然发掘一个产品新的用处或新的用途能拓宽它的获利渠道。这不仅能创造更多的收入,而且由于产量的增加使单元生产成本降低,从而使利润提高。举例来说,PVC早期是用来制造唱片和塑料雨衣的,后来的用途扩展到塑料薄膜,特别是工程上所使用的管子和排水槽。
我们已经强调了化学产品是由于它们的效果,或特殊的用途、用处而得以售出这个事实。这就意味着化工产品公司的技术销售代表与顾客之间应有密切的联系。对顾客的技术支持水平往往是赢得销售的一个重要的因素。进行研究和开发的化学家们为这些应用开发提供了帮助。CH3CH3F的制造就是一个例子。它最开始是用来做含氟氯烃的替代物作冷冻剂的。然而近来发现它还可以用作从植物中萃取出来的天然物质的溶解剂。当它作为制冷剂被制造时,固然没有预计到这一点,但它显然也是应用开发的一个例子。
3.化工行业中研究与开发活动的变化
化学工业的不同部门所进行的R&D的性质与数量都有很大的变化。与大规模生产的基础化工产品有关的部门中,化学产品和技术变化都很慢,因为流程已很成熟。R&D经费支出属于化工行业中低的一端,而且大部分的费用是用于过程改进和废水处理。无机方面的例子有氨、肥料和氯碱的生产,有机方面的如乙烯等一些基础石油化学的中间产物。
不一样规模生产的是药品和除草剂。人们付出了巨大而持续的努力以合成能产生所希望的、特殊的生物作用的新分子。一家公司每年可能要合成10,000新化合物以供筛选。可以想象一些医药公司其每年的R&D经费支出高达100亿美元。换句话说,他们把超过14%的销售收入投入在R&D上。
Unit 20 Material Science and Chemical Engineering 材料科学和化学工程
几年以前,谁会想到一架飞机可以绕地球航行而中途不需要着陆或添加燃料?而在1986年新型的飞机航海者就做到了这一点。航海者具备长途飞行能力的秘密就在于几年前还没有出现的先进的材料。其机身大部分是由强度大、质量轻的聚合纤维用耐久的、高强度的粘合剂组装而成的。而发动机润滑油是合成的多组分液体,可维持很长时间连续运转的润滑性。这些特殊材料具有科学家和工程师们为满足现代社会的需求所发明的先进技术。
如运输、通讯、电子、能量转换这些工业的未来多依赖新的、先进的材料以及生产中所需要的加工技术。近年来,在我们了解了如何把一些特殊的具有高性能的物质融入原材料并且怎样最好地在复杂设计中使用这些材料后,这方面已有了很大的发展。
材料科学和工程的革命为化学工程师带来了机会,也带来了挑战。化学工程师凭借他们在化学、物理和数学方面的知识基础以及他们对传输现象、动力学、反应工程和过程设计的了解,能够创造性地解决现代材料技术中的问题。但是他们一定要摈弃掉传统职业理念中“考虑大的”这个习惯,要有效地投入现代材料科学和工程中必须要学会“从小处思考”在制造现代先进材料时的关键现象是发生在分子级和微观的水平。如果化学工程师要为这些新材料设计新产品和工艺就必须了解并且学会控制这些现象。在下面选择介绍的几种材料领域里我们将叙述这种困难的挑战。 1.聚合物
现代聚合物科学的时代属于化学工程师。这些年来,聚合物化学家创造了大量的高分子和聚合物。然而了解这些高分子是怎样被合成并加工以最大限度地具备理论性质仍然是研究的前沿领域。一直到最近才开发了现代仪器帮助我们了解高分子之间、高分子与固体粒子、有机和无机纤维与其它界面之间的相互作用。化学工程师正使用这些工具探索高分子的微型动力学现象,他们利用从这些技术中获得的知识,正在处理高分子间的反应以开发先进的工艺并制造新的材料。.

4
通过化学加工控制材料微型结构的能力可用现代高强度聚合纤维进行描述。一些聚合纤维的强度-质量比比钢铁高一个数量级。它的自由取向是由所选择的加工条件以及芳香族聚酰胺的高度刚性的线性分子结构所决定的。在纺丝时,液相中的定向部分是围绕纤维轴方向排列而使得纤维具有高强度和高硬度,各向异性的纺丝纤维的概念则在新聚合物如聚苯并噻唑、聚乙烯的溶解和熔融方面都有了延伸。超高强度的聚乙烯纤维是通过冻胶纺丝的方法制备的。同样的,控制聚合物的分子取向以生产高强度产品也可以通过其它的工艺途径,如在极其精确的条件下进行纤维拉伸而完成。 除了这些可以得到具有特别高性能的材料的加工过程,化学工程师们还设计一些新的工艺过程以生产低成本的聚合物。 2.聚合复合材料
复合材料包括在一个聚合物母体上嵌入或粘合上高强度或高模数纤维。这些纤维可能是短的、长的或连续的。它们可能是随意取向的而使复合材料在所有方向上都具有较大的强度或硬度,也可能沿某个特殊方向取向而使复合材料的高性能优先沿着某个轴线表现出来。后者是根据一向微结构加固的原理,通过不连贯的、拉伸支撑电缆线或电缆条达到目的。 要得到在多个方向上具有优良性能的材料,可以通过改变角度粘结各向异性的复合片得到合成板。另一方面,两向强化的材料可以通过把高性能的纤维编织成一个平面,面上有足够的粘结力而使加固结构表现得就像联结起来的网或桁架。你可以想象,化学工程师和纺织工程师之间的学术合作将有利于选择经线、纬线和高强度纤维的编织方法,以得到高选择性能分布的桁架型的复合材料。
第一代聚合合成材料(如玻璃纤维)使用热固性环氧树脂聚合物。它是用任意取向的短玻璃纤维进行强化的。环氧树脂填充在一个模型中被塑化成永久的形状而得到轻质的、强度适当的模制塑胶。
现代复合材料是用手工把编织好的玻璃纤维放到模具或预型件中,然后用树脂灌注,固化成型后制得的。这些复合材料最先是使用在某些型号的军用飞机上。因为比较轻的机身使飞行巡航范围增大。今天,飞机和航空飞船的大部分部件都是这样制造的,而且汽车也正在加入到这个行列。现代复合材料正被应用于小汽车和载重卡车的车身面板、车棚、后行李箱盖、管道、驱动轴和燃料罐。在这些应用中,复合材料表现出比金属更好的强度-质量比和更优良的抗腐蚀性。例如,一种聚合复合材料制成的汽车车棚比用铝质的轻一点,比钢铁的轻两倍,但这种方法所需能量比钢铁的低一点,比铝的低20%。模塑和刀具加工的成本也比较低,使模型的改变可以更快而适应新设计的要求。
这些复合材料表现出来的机械强度主要是由强化玻璃纤维决定的,尽管结构缺陷会使强度减弱。工程学研究正提供重要的信息说明材料结构是如何受到玻璃树脂的界面性质、构造空隙和类似缺陷的影响以及这些微缺陷是如何扩散产生构造裂缝的。这些复合材料以及从对它们的研究中获得的信息使人类进入到生产第二代聚合复合材料的阶段,即以高强度纤维如芳香族聚酰胺为基础的复合材料。
3.现代陶瓷
对大多数人来说,“陶瓷”这个词会让人联想到瓷器、陶器、砖、瓦这些东西。现代陶瓷以它们的组成、加工过程和微细结构区别于这些传统的陶瓷。例如:
·传统的陶瓷是用天然的原料如粘土或硅石制成的。现代陶瓷则要求非常纯的人造原料如碳化硅、氮化硅、氧化锆或氧化铝,可能还要渗入一些复杂的添加剂来产生特殊的微结构。

·传统陶瓷是先在陶工轮上或粉浆浇注成型,然后在窑里烧结定型。现代陶瓷是用更为复杂的工艺过程如高温静压成型法来定型的。
·传统陶瓷的微结构容易形成在光学显微镜下就可以看见的裂痕。而现代陶瓷的微结构则要均匀得多,一般要在5倍或更大倍数的电子显微镜下才能检查出瑕疵来。
现代陶瓷的应用范围更为广泛。在很多情况下,现代陶瓷并未直接成为最终产品,而是组合在一些复杂的系统中成为优良性能的关键部分。现代陶瓷的商业应用可以在切削工具、发动机喷嘴、涡轮和涡轮增压器的元件、太空舱的瓦面、储藏原子和化学废物的圆柱体、气体和石油钻探阀、电动极板和防护罩以及腐蚀性液体中的电极等等方面看见。
4.陶瓷合成材料
像聚合复合材料一样,陶瓷复合材料也包括在连续的基质上嵌入高强度或高模数的纤维。纤维可以是碳化硅或氧化铝以“晶须”的形式出现,然后生长为单个晶体。这与同样的物质直接嵌入在大块陶瓷上相比较所产生裂纹较少。陶瓷复合体上的纤维可以阻碍裂纹的扩散。正在生长的裂纹会向纤维处偏移或使纤维脱离基质。这两个过程都要吸收能量,从而减慢了裂纹的扩散。陶瓷复合材料的强度、硬度和韧性主要取决于强化纤维,但是基质也会对这些性质产生影响。

5
复合材料的导热和导电性能受基质传导系数的影响很大。纤维和基质之间的相互作用对复合材料机械性能的影响也很大,并可通过纤维表面纤维和基质间的化学兼容性进行调整,这两种物质粘合在一起的前提就是基质以流体形态存在时能润湿纤维。两种组分间形成了化学键。
与现代陶瓷的产生一样,化学反应在陶瓷复合材料的加工制造中也充当了关键的角色。这些复合材料要求无瑕疵的陶瓷纤维、纤维和母体间有最适当的作用力,这才能在使用中展现所预想的机械性能。在实际的制造过程中设计这样的化学反应要求化学工程师具备专业的知识。
5.复合液体
最后一类重要的复合材料是复合液体。复合液体是高结构液体,以悬浮液、表面活性剂、液晶相或其它大分子与固体微粒或液滴组成。许多复合液体对现代工业和社会都是必不可少的,因为它们表现出来的性质对一些特殊用途是非常重要的。这些用途包括润滑剂、水力牵引液体以及油田钻井泥浆,油漆、涂料和粘合剂也可能是合成液体。确实,在任何情况下,如果好的液体状态对某种传递和反应是重要的,那么合成液体就是有价值的。
化学工程师长期涉足材料科学和工程学研究工作。随着新材料的开发,其性质越来越依赖微结构和加工过程,研究程度也将深入。化学工程师将探索微结构的本质它是如何在材料中形成的, 哪些因素可以用来控制它。他们将采用新的方式把传统的分离开来的材料合成和材料加工融合起来。他们还将用新方法解决构造的问题,修复复杂的材料系统。


Unit 21 Chemical Industry and Environment 化学工业与环境
我们怎样才能减少产生废物的数量?我们怎样才能使废弃物质和商品纳入循环使用的程序?所有这些问题必须要在未来的几年里通过仔细的研究得到解决,这样我们才能保持文明与自然的平衡。

1.大气化学
燃煤发电厂像一些自然过程一样,也会释放硫化合物到大气层中,在那里氧化作用产生硫酸颗粒能反射入射进来的可见太阳辐射。在对流层,化石燃料燃烧所产生的氮氧化物在阳光的影响下与许多有机物分子结合产生都市烟雾。挥发的碳氢化合物异戊二烯,也就是众所周知的合成橡胶的结构单元,可以在森林中天然产生含氯氟烃。我们所熟悉的CFCs在汽车空调和家用冰箱里是惰性的,但在中平流层内在紫外线的照射下回发生分解从而对地球大气臭氧层造成破坏,全球大气层中臭氧的平均浓度只有3ppm,但它对所有生命体的生长发育都起了关键的保护作用,因为是它吸收了太阳光线中有害的短波紫外辐射。
在过去的二十年中,公众的注意力集中在人类对大气层的改变:酸雨、平流层臭氧空洞、温室现象,以及大气的氧化能力增强,前几代人已经知道,人类的活动会对邻近的环境造成影响,但意识到像酸雨这样的效应将由局部扩展到洲际范围则是慢慢发现的。随着臭氧空洞问题的出现,考虑到对全球的威胁,我们已真正进入到全球话改变的时代,但是基本的科学论据还没有完全建立。
2.生命周期分析
产品生命循环周期的每一个阶段都会对环境造成影响。从原材料的提取,到加工、制造和运输的过程,最后到被消耗和丢弃或回收,每一个阶段都对工艺学和化学提出了挑战。重新设计产品和过程以减少对环境的影响需要新的生产原理和在不同的水平层面上理解化学变化,对环境友善的产品要求有新的原料,它们应是可再使用的,可循环的,或者可生物降解的。物质的性质是由其化学组成和结构决定的,要减少废品和有污染的副产品,就要开发新的化学工艺线路,已开发的化学分离技术需要有效地提高以分离出剩余的污染物,这反过来又要求新的化学处理方法使它们变得无害。而诸如放射性元素和那些不容易转化为无害物质的重金属污染物则需要把它们固定为惰性物质以便能安全地储放。还有最后一点,早期的污染残留物,对环境污染程度尚未很意识到的一些物质要求进一步用化学和生物的修复技术进行处理。
了解化学反应的机理可以帮助我们发现以前不知道的环境问题,CFCs对臭氧层造成的威胁能够正确地预防要得益于大气化学的基础研究。由此导致了国际上一致同意逐步取消这些产品的生产。而代之以作用相同但对环境更为友善的

6
其它产品。另一方面,南极上空臭氧空洞的出现使科学家们大为震惊,随后才发现了以前所不了解的南极寒冷的平流层内硝酸晶体表面所发生的氯原子的反应。这对我们进一步了解自然界中所发生的化学反应过程是非常重要的。不管这些反应是发生在淡水中,海水中,土壤里,地下环境或是大气中。
3.对环境影响最小的生产
把废物排放到空气、水或土壤中不仅对环境造成了直接的影响,还是对自然资源的一个潜在的浪费。早期减少化学过程对环境影响的工作主要集中在工厂废气排放如环境之前有害物质的分离,但这种思路只考虑了问题的一半。因为一个理想的化学过程,也就是没有有害的副产品产生的过程应在一开始就建立好,任何排放物至少应像进入到工厂内的空气和水一样干净。这样的过程才可以称是“与环境友善的”
对健康有害影响的关注逐渐升级,人们首先考虑到如何消除或减少工业过程中所用有害化学物质的数量。最好的方法是寻找替代的化学产品,它们能起到一样的作用但毒害性较小。如果不能寻找到一种有毒化学物质的替代品,那么比较好的战略思想是开发一种就地生产的工艺,而且只生产当时所需要的那么多的数量。
革新的化学方法已开始设计对环境合理的工艺过程,以便更为有效的使用能量和原材料。例如,催化剂方面的近期进展使化学反应可以在较低的温度和压力下进行。反过来,这种改变又减少了这些过程的能量需求,简化了制造加工设备对构成材料的选择,新的催化剂还用于避免生产不希望的副产品。

4. 发电厂排放物的控制
通过燃煤、燃油和燃烧天然气产生能量的设备都会排放出一氧化碳、碳氢化合物、氮氧化物以及许多其它不受欢迎的副产物如灰尘和痕量的汞。现在可以采用一系列不断发展的技术来减少不希望有的物质的排放以适应国家和地区标准的要求。化学家和化学工程师对工业水平的进步做出了巨大的贡献。而催化科学为开辟这些前沿领域正在扮演重要的角色。
同时控制多种污染物是近年来开发先进的催化剂或吸附剂技术的目的。例如,催化方法可以使汽车尾气中CO氧化的同时,还原氮的氧化物。另一些研究工作则定位于在中试阶段通过一种吸附剂的作用同时去除烟道气中的硫和氮氧化物,而不会产生大量的废物。
5 对环境友善的产品
对产品在环境中的变化越来越了解使得科学家们开始设计“绿色”产品。一个重要的例子来自1940-1950s的洗涤剂工业。当时以支链烷基苯磺酸盐为表面活性剂的新产品被引入。这些洗涤剂洗涤效率更高。但其后发现这些物质残留在废水中在河面上形成泡沫。问题追溯到这些支链的烷基苯磺酸盐:它不像以前人们所使用的肥皂。它不能被传统污水处理厂的细菌所有效地生物降解。经过深入的研究工作了解了生物化学过程使化学家们设计和合成了另一类新型的表面活性剂,为直链烷基苯磺酸盐。这些新的化合物与传统肥皂中的脂肪酸有相似的分子结构,因而微生物可以降解这些组分,而它与支链烷基苯磺酸盐的相似性又使其具有卓越的洗涤性能。
新的生物化学也正在帮助农民减少使用杀虫剂.例如,棉作物可以通过改变基因而具备对棉螟蛉的抵抗力.天然存在的细菌中一个基因当被转移到棉作物中时,能够祖师作物产生一种原来有细菌产生的蛋白质.当螟蛉虫开始吃作物时,这种蛋白质通过切断螟蛉的消化过程从而杀死害虫. 6. 处理
越来越多的环境问题与废物的排放有关,而一些原材料又存在供给有限的问题.这二者的联系引起了人们对处理这一课题越来越大的兴趣.金属和大多数纸张的处理从技术上来说是简单的,这些物质在世界很多地方都已普遍进行了处理.料的处理则面临着较大的技术方面的挑战.即使把它们与其它类型的废品分离开来以后,不同种类的塑料还需要再彼此分离。即使如此,不同类型的塑料具有不同的化学性质,因而也需要开发不同的处理工艺. 一些塑料可以通过简单地熔化注塑或用合适的溶剂进行分解再重新塑造成新塑料的方法进行处理。比如,把大的聚合物分子裂解成较小的亚单元,再以此作为新聚合物的结构单元。确实,用这种方法处理软塑料瓶的计划正在进行中。
化学家和化学工程师们所做的大量的研究工作需要被成功地开发为所需要的处理技术。有时,也需要开发一些全新的聚合材料.它们具有更容易进行处理的分子结构. 7. 通过分离和转换减少废物量
把一些需要进行特殊处理的成分从那些可用常规方法处理或处置的废物中分离出来需要新的工艺过程。而开发这些


7
过程则需要深入研究以从根本上了解所涉及的化学现象. 含金属离子的酸性废水.一些工业过程产生了大量的酸性废水.这些废水可以分离成干净的水、可再利用的酸、以及可从中提取出可回收金属的淤渣吗?这样的处理过程既可以保护环境,所需费用又与处置废水所需成本及罚款相差无几。
工业废水处理。工业废水中的有害有机物能被热催化或光催化的过程破坏。一项前景很好的研究工作是利用高温高压下的超临界水。在这种条件下,水表现出截然不同的物理和化学性质,它可以溶解并有助于那些在常态下的水中几乎是惰性的物质发生反应。
高辐射的核废料。如果需要储藏的核废料其数量和组成能够显著地减少,就可以节省一大笔的费用。这种减少需要用经济的方法把放射性成分与大量其它与核废料共存的物质分离开来,这样有害的化学废料就可以分别地进行处置,核废料的处置仍将需要今后许多年进行大量的研究和开发工作。
膜技术。应用半渗透性薄膜进行分离大有希望获得成功。这些膜通常是片状聚合物。能够让一些化学物质通过而不让另一些物质通过。这些膜常用来纯化水,阻挡住一些溶解的盐类提供干净的饮用水。膜分离技术也用来提纯制造厂出来的废水。膜分离还可以用在气体方面,用来回收天然气中的微量组分。通过清除CO提高天然气的热值,以及从空气中得到氮气。研究中的难点包括开发化学和物理学方面更有弹性的膜。这样可以使制造费用不那么贵,并且可以提供更好的分离效率以降低分离成本。
生物技术。科学家们已经向自然界寻求帮助战胜有毒物质。土壤、水和沉积物中的一些微生物能以许多有机化学物质为食。数十年来它们一直被用于传统的水处理系统。研究者们正通过仔细测量微生物生存的最佳物理、化学和营养条件致力于处理强度更高的对象。他们的工作可能导致设计和生产新一代生物废水处理设备。近年来的一个很大的进展是生物反应器内微生物的固定。即把微生物固定在反应器内降解废物。这种固定可以允许有更高的流速。传统反应器内流速过高会冲走微生物。新的多孔载体的使用也使每个反应器中微生物的数量明显提高。



8

《化学工程与工艺专业英语》课文翻译

相关推荐